A098202 a(n) is the length of the iteration trajectory when the cototient function (A051953) is applied to the n-th primorial number (A002110(n)).
3, 5, 8, 12, 18, 20, 31, 32, 41, 43, 61, 65, 80, 77, 95, 125, 131, 125, 157, 173, 140, 192, 195, 221, 213, 212, 261, 269, 277, 300, 296, 321, 336, 329, 358, 367, 379, 405, 428, 439, 438, 464, 477, 493, 506, 454, 491, 542, 564, 588, 543, 600, 639, 660
Offset: 1
Examples
For n = 3: list = {30,22,12,8,4,2,1,0}, a(4) = 8.
Programs
-
Mathematica
g[x_] := x - EulerPhi[x]; f[x_] := Length[ FixedPointList[g, x]] - 1; q[x_] := Product[ Prime[j], {j, x}]; Table[ f[ q[n]], {n, 33}] a[n_] := Length@ NestWhileList[(# - EulerPhi[#])&, Times @@ Prime[Range[n]], # > 0 &]; Array[a, 30] (* Amiram Eldar, Nov 19 2024 *)
-
PARI
a(n) = {my(p = prod(i=1, n, prime(i)), c = 1); while(p > 0, c++; p -= eulerphi(p)); c;} \\ Amiram Eldar, Nov 19 2024
Formula
Extensions
More terms from Robert G. Wilson v, Sep 22 2004
a(37)-a(54) from Amiram Eldar, Nov 19 2024