cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A362181 Number of numbers k such that A323410(k) = n.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 2, 1, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 5, 4, 5, 4, 5, 3, 4, 4, 5, 3, 5, 3, 5, 5, 5, 4, 6, 4, 6, 4, 6, 2, 7, 4, 6, 4, 6, 3, 7, 3, 5, 4, 6, 3, 8, 2, 6, 6, 7, 4, 8, 4, 6, 6, 7, 3, 9, 4, 7, 4, 5, 5, 9, 6, 9, 4, 7, 3
Offset: 2

Views

Author

Amiram Eldar, Apr 10 2023

Keywords

Comments

The offset is 2 since A323410(p) = 1 for all prime powers p (A246655).
a(0) = 1, since there is only one solution, x = 1, to A323410(x) = 0.

Crossrefs

Row lengths of A362180.
The unitary version of A063740.
Cf. A246655, A323410, A362182 (positions of 0's), A362183 (indices of records), A362184, A362185 (positions of 1's), A362186.
Similar sequences: A014197, A361967.

Programs

  • Mathematica
    ucototient[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); ucototient[1] = 0; With[{max = 100}, ucot = Table[ucototient[n], {n, 1, max^2}]; Table[Length[Position[ucot, n]], {n, 2, max}] // Flatten]

Formula

a(A362182(n)) = 0.
a(A362185(n)) = 1.
a(A362186(n)) = n.

A362180 Irregular table read by rows in which the n-th row consists of all the numbers m such that A323410(m) = n.

Original entry on oeis.org

6, 10, 12, 15, 14, 20, 21, 18, 24, 28, 35, 22, 36, 40, 33, 45, 26, 44, 56, 39, 55, 63, 52, 72, 65, 77, 34, 48, 88, 51, 91, 99, 38, 68, 80, 104, 57, 85, 117, 30, 76, 112, 95, 119, 143, 46, 136, 144, 69, 133, 153, 50, 92, 152, 176, 75, 115, 171, 187, 54, 100, 208
Offset: 2

Views

Author

Amiram Eldar, Apr 10 2023

Keywords

Comments

The offset is 2 since A323410(p) = 1 for all prime powers p (A246655).
The 0th row consists of one term, 1, since 1 is the only solution to A323410(x) = 0.

Examples

			The table begins:
  n   n-th row
  --  -----------
   2
   3
   4  6;
   5
   6  10, 12;
   7  15;
   8  14, 20;
   9  21;
  10  18, 24, 28;
  11  35;
  12  22, 36, 40;
		

Crossrefs

Cf. A246655, A323410, A362181 (row lengths).
Similar sequences: A032447, A361966, A362213.

Programs

  • Mathematica
    ucototient[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); ucototient[1] = 0;
    With[{max = 28}, ucot = Table[ucototient[n], {n, 1, max^2}]; row[n_] := Position[ucot, n] // Flatten; Table[row[n], {n, 2, max}] // Flatten]

A362183 Unitary highly cototient numbers: numbers k that have more solutions x to the equation A323410(x) = k than any smaller k.

Original entry on oeis.org

0, 6, 10, 20, 31, 47, 53, 65, 77, 89, 113, 119, 149, 167, 179, 209, 293, 299, 329, 359, 389, 419, 479, 509, 599, 629, 779, 839, 989, 1049, 1139, 1259, 1469, 1559, 1649, 1679, 1889, 2099, 2309, 2729, 3149, 3359, 3569, 3989, 4289, 4409, 4619, 5249, 5459, 6089, 6509
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2023

Keywords

Comments

Indices of records of A362181.
The corresponding numbers of solutions are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 21, ... (A362184).

Crossrefs

The unitary version of A100827.
Similar sequences: A097942, A361968.

Programs

  • Mathematica
    ucototient[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); ucototient[1] = 0; With[{max = 300}, solnum = Table[0, {n, 1, max}]; Do[If[(i = ucototient[k]) <= max, solnum[[i]]++], {k, 2, max^2}]; s = {0}; solmax=1; Do[sol = solnum[[k]]; If[sol > solmax, solmax = sol; AppendTo[s, k]], {k, 2, max}]; s]

A362185 Numbers k with a single solution x to the equation A323410(x) = k.

Original entry on oeis.org

0, 4, 7, 9, 11, 216, 218, 220, 546, 652, 666, 700, 834, 850, 906, 924, 996, 1242, 1386, 1476, 1506, 1516, 1596, 1646, 1662, 1758, 1770, 1858, 1890, 1900, 1946, 2046, 2170, 2262, 2352, 2422, 2578, 2626, 2668, 2682, 2814, 2842, 2980, 2992, 3010, 3048, 3100, 3154
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2023

Keywords

Comments

Numbers k such that A362181(k) = 1.

Examples

			0 is a term since there is only one solution, x = 1, to A323410(x) = 0.
		

Crossrefs

The unitary version of A131825.
Similar sequence: A361969.

Programs

  • Mathematica
    ucototient[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); ucototient[1] = 0; With[{max = 300}, solnum = Table[0, {n, 1, max}]; Do[If[(i = ucototient[k]) <= max, solnum[[i]]++], {k, 2, max^2}]; Join[{0}, Position[solnum, 1] // Flatten]]

A362182 Unitary noncototient numbers: numbers k such that A323410(x) = k has no solution.

Original entry on oeis.org

2, 3, 5, 330, 1206, 1210, 1656, 1718, 1806, 1866, 1926, 2376, 2982, 3162, 3186, 3342, 4012, 4062, 4194, 4326, 4502, 4662, 4810, 5322, 5466, 6172, 6402, 6462, 6534, 6546, 6672, 6756, 7266, 7430, 7866, 8030, 8140, 8286, 8386, 8562, 8586, 8860, 9114, 9370, 9516, 9906
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2023

Keywords

Comments

Numbers k such that A362181(k) = 0.
Are 3 and 5 the only odd terms? There are no other odd terms below 10^5.

Crossrefs

The unitary version of A005278.
Similar sequences: A007617, A347771.

Programs

  • Mathematica
    ucototient[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); ucototient[1] = 0; With[{max = 2000}, Complement[Range[max], Table[ucototient[n], {n, 1, max^2}]]]

A362186 a(n) is the least number k such that the equation A323410(x) = k has exactly n solutions, or -1 if no such k exists.

Original entry on oeis.org

2, 0, 6, 10, 20, 31, 47, 53, 65, 77, 89, 113, 125, 119, 149, 173, 167, 179, 233, 279, 239, 209, 439, 293, 365, 299, 329, 359, 455, 521, 467, 389, 461, 419, 479, 773, 539, 509, 599, 845, 671, 791, 749, 719, 659, 629, 809, 1055, 881, 779, 899, 965, 929, 1121, 839, 1403
Offset: 0

Views

Author

Amiram Eldar, Apr 10 2023

Keywords

Comments

Is there any n for which a(n) = -1?

Crossrefs

The unitary version of A063507.
Similar sequences: A007374, A361970.

Programs

  • Mathematica
    ucototient[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); ucototient[1] = 0; With[{max = 300}, solnum = Table[0, {n, 1, max}]; Do[If[(i = ucototient[k]) <= max, solnum[[i]]++], {k, 2, max^2}]; Join[{2, 0}, TakeWhile[FirstPosition[ solnum, #] & /@ Range[2, max] // Flatten, NumberQ]]]

Formula

A362181(a(n)) = n.

A362211 a(n) is the unique solution to A323410(x) = A362185(n).

Original entry on oeis.org

1, 6, 15, 21, 35, 11392, 1688, 10048, 53632, 101632, 5272, 2632, 6616, 50368, 1386, 102016, 1716, 1722, 161152, 4356, 11992, 92992, 4716, 101312, 589312, 2634, 644608, 3538, 3778, 898048, 30896, 16312, 3610, 3510, 4702, 1432576, 4626, 606976, 8908, 3738, 343936
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2023

Keywords

Crossrefs

Similar sequences: A131826, A362212.

Programs

  • Mathematica
    ucototient[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); ucototient[1] = 0; With[{max = 3000}, sol = solnum = Table[0, {n, 1, max}]; Do[If[(i = ucototient[k]) <= max, sol[[i]] = k; solnum[[i]]++], {k, 2, max^2}]; Join[{1}, sol[[Position[solnum, 1] // Flatten]]]]

Formula

A323410(a(n)) = A362185(n).

A323409 Greatest common divisor of Product (p_i^e_i)-1 and n, when n = Product (p_i^e_i); a(n) = gcd(n, A047994(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 6, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 4, 1, 2, 5, 14, 3, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 3, 2, 1, 6, 1, 20, 1, 2, 1, 12, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Comments

Records 1, 2, 6, 12, 14, 20, 24, 84, 120, 168, 240, 468, 720, 1008, 1240, 1488, 1632, 7440, 9360, 14880, 32640, ... occur at n = 1, 6, 12, 36, 56, 80, 144, 168, 240, 504, 720, 1404, 3600, 4032, 4960, 8928, 13056, 14880, 28080, 44640, 65280, ...

Crossrefs

Programs

  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); };
    A323409(n) = gcd(n, A047994(n));

Formula

a(n) = gcd(n, A047994(n)), where A047994 is unitary phi.

A323413 Infinitary analog of cototient function A051953: a(n) = n - A091732(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 5, 1, 6, 1, 6, 1, 8, 7, 1, 1, 10, 1, 8, 9, 12, 1, 18, 1, 14, 11, 10, 1, 22, 1, 17, 13, 18, 11, 12, 1, 20, 15, 28, 1, 30, 1, 14, 13, 24, 1, 18, 1, 26, 19, 16, 1, 38, 15, 38, 21, 30, 1, 36, 1, 32, 15, 19, 17, 46, 1, 20, 25, 46, 1, 48, 1, 38, 27, 22, 17, 54, 1, 20, 1, 42, 1, 48, 21, 44, 31, 58, 1, 58, 19
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], 1])); a[1] = 0; a[n_] := n - Times @@ (Flatten@(f @@@ FactorInteger[n]) - 1); Array[a, 100] (* Amiram Eldar, Jan 09 2021 *)
  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); };
    A323413(n) = (n-A091732(n));

Formula

a(n) = n - A091732(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/2 - A327575 = 0.171064... . - Amiram Eldar, Dec 15 2023

A333104 Unitary quasiperfect cototient numbers: numbers k such that the sum of the iterated unitary cototient function of k is equal to k+1.

Original entry on oeis.org

10, 22, 98, 118, 230, 266, 1452, 88894, 114214, 1274198, 51675986, 61177358, 82986118
Offset: 1

Views

Author

Amiram Eldar, Mar 07 2020

Keywords

Comments

a(14) > 10^9.

Examples

			10 is a term since A323410(10) = 6, A323410(6) = 4, A323410(4) = 1 and 6 + 4 + 1 = 11 = 10 + 1.
		

Crossrefs

Programs

  • Mathematica
    uphi[0] = 0; uphi[1] = 1; uphi[n_] := (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]; ucot[n_] := n - uphi[n]; Select[Range[10^4], Plus @@ FixedPointList[ucot, #] == 2*# + 1 &]
Showing 1-10 of 10 results.