cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A323410 Unitary analog of cototient function A051953: a(n) = n - A047994(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 6, 1, 8, 7, 1, 1, 10, 1, 8, 9, 12, 1, 10, 1, 14, 1, 10, 1, 22, 1, 1, 13, 18, 11, 12, 1, 20, 15, 12, 1, 30, 1, 14, 13, 24, 1, 18, 1, 26, 19, 16, 1, 28, 15, 14, 21, 30, 1, 36, 1, 32, 15, 1, 17, 46, 1, 20, 25, 46, 1, 16, 1, 38, 27, 22, 17, 54, 1, 20, 1, 42, 1, 48, 21, 44, 31, 18, 1, 58, 19, 26, 33, 48
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); a[1] = 0; Array[a, 100] (* Amiram Eldar, Apr 08 2023 *)
  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); };
    A323410(n) = (n-A047994(n));

Formula

a(n) = n - A047994(n), where A047994 is unitary phi.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 - A065463 = 0.2955577... . - Amiram Eldar, Dec 15 2023

A319677 Denominator of A047994(n)/n where A047994 is the unitary totient function.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 2, 13, 7, 15, 16, 17, 9, 19, 5, 7, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 32, 33, 17, 35, 3, 37, 19, 13, 10, 41, 7, 43, 22, 45, 23, 47, 8, 49, 25, 51, 13, 53, 27, 11, 4, 19, 29, 59, 5, 61, 31, 21, 64, 65, 33, 67, 17, 69, 35, 71
Offset: 1

Views

Author

Michel Marcus, Sep 26 2018

Keywords

Crossrefs

Cf. A047994, A030163, A305678, A319481, A319676 (numerators), A323409, A331177 (ordinal transform).

Programs

  • Mathematica
    uphi[n_] := Product[{p, e} = pe; p^e - 1, {pe, FactorInteger[n]}];
    a[n_] := Denominator[uphi[n]/n];
    Array[a, 100] (* Jean-François Alcover, Jan 10 2022 *)
  • PARI
    a(n)=my(f=factor(n)~); denominator(prod(i=1, #f, f[1, i]^f[2, i]-1)/n);

Formula

a(p) = p, for p prime.
a(A002110(n)) = A060753(n).
a(n) = n / A323409(n) = n / gcd(n, A047994(n)). - Antti Karttunen, Jan 11 2020

A345937 a(n) = gcd(n-1, uphi(n)), where uphi is unitary totient (or unitary phi) function, A047994.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 6, 7, 8, 1, 10, 1, 12, 1, 2, 15, 16, 1, 18, 1, 4, 1, 22, 1, 24, 1, 26, 9, 28, 1, 30, 31, 4, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 4, 1, 46, 1, 48, 1, 2, 3, 52, 1, 2, 1, 4, 1, 58, 1, 60, 1, 2, 63, 16, 5, 66, 1, 4, 3, 70, 1, 72, 1, 2, 3, 4, 1, 78, 1, 80, 1, 82, 1, 4, 1, 2, 1, 88, 1, 18, 1, 4, 1, 2, 1, 96
Offset: 1

Views

Author

Antti Karttunen, Jun 29 2021

Keywords

Crossrefs

Programs

  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    A345937(n) = gcd(n-1, A047994(n));

Formula

a(n) = gcd(n-1, A047994(n)).
a(n) = A047994(n) / A345938(n).
a(n) = (n-1) / A345939(n), for n > 1.
a(2n-1) = A345947(2n-1), for n >= 1.

A344877 a(n) = gcd(n, A344875(n)), where A344875 is multiplicative with a(2^e) = 2^(1+e) - 1, and a(p^e) = p^e -1 for odd primes p.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 6, 1, 4, 3, 2, 1, 6, 1, 2, 1, 14, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 20, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 6, 5, 2, 3, 2, 1, 4, 1, 2, 3, 1, 1, 6, 1, 4, 1, 2, 1, 24, 1, 2, 3, 2, 1, 6, 1, 4, 1, 2, 1, 84, 1, 2, 1, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 1, 4, 1, 6, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2021

Keywords

Crossrefs

Cf. A344875.
Cf. also A323409.

Programs

  • Mathematica
    f[2, e_] := 2^(e + 1) - 1; f[p_, e_] := p^e - 1; a[1] = 1; a[n_] := GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 03 2021 *)
  • PARI
    A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
    A344877(n) = gcd(n, A344875(n));

A323406 Greatest common divisor of Product (p_i^e_i)-1 and Product (p_i^e_i)+1, when n = Product (p_i^e_i): a(n) = gcd(A047994(n), A034448(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 6, 8, 1, 2, 2, 2, 6, 4, 2, 2, 2, 2, 6, 2, 2, 2, 8, 2, 1, 4, 2, 24, 2, 2, 6, 8, 2, 2, 12, 2, 30, 4, 2, 2, 2, 2, 6, 8, 2, 2, 2, 8, 6, 4, 2, 2, 24, 2, 6, 16, 1, 12, 4, 2, 6, 4, 24, 2, 2, 2, 6, 8, 2, 12, 24, 2, 6, 2, 2, 2, 4, 4, 6, 8, 2, 2, 4, 8, 6, 4, 2, 24, 2, 2, 6, 40, 2, 2, 8, 2, 42, 48
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Programs

  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); };
    A034448(n) = { my(f=factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A323406(n) = gcd(A034448(n), A047994(n));

Formula

a(n) = gcd(A034448(n), A047994(n)), where A034448 is unitary sigma, and A047994 is unitary phi.
Showing 1-5 of 5 results.