cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A331177 Number of values of k, 1 <= k <= n, with A319677(k) = A319677(n), where A319677(n) = n/gcd(n, uphi(n)), and uphi is unitary totient function (A047994).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 3, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 3, 2, 3, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 3, 1, 1, 5, 1, 3, 1, 2, 1, 5, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A319677.

Crossrefs

Cf. also A330739, A331175.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A047994(n) = { my(f=factor(n)); prod(i=1, #f~, (f[i, 1]^f[i, 2])-1); };
    A319677(n) = n/gcd(n, A047994(n));
    v331177 = ordinal_transform(vector(up_to, n, A319677(n)));
    A331177(n) = v331177[n];

A327837 Decimal expansion of the asymptotic mean of the number of exponential divisors function (A049419).

Original entry on oeis.org

1, 6, 0, 2, 3, 1, 7, 1, 0, 2, 3, 0, 5, 4, 1, 8, 0, 5, 2, 3, 4, 9, 6, 2, 6, 3, 1, 5, 6, 2, 1, 1, 6, 1, 0, 0, 3, 7, 7, 6, 9, 3, 9, 4, 9, 5, 7, 8, 5, 5, 7, 2, 7, 3, 7, 7, 4, 6, 5, 3, 5, 2, 8, 5, 9, 8, 7, 8, 8, 8, 8, 6, 0, 2, 1, 6, 3, 3, 5, 4, 7, 2, 7, 5, 6, 6, 7, 3, 3, 9, 0, 4, 9, 4, 8, 8, 0, 6, 4, 1, 8, 0, 7, 5, 7
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2019

Keywords

Examples

			1.602317102305418052349626315621161003776939495785572...
		

Crossrefs

Cf. A059956 (constant for unitary divisors), A306071 (bi-unitary), A327576 (infinitary).

Programs

  • Mathematica
    $MaxExtraPrecision = 1500; m = 1500; em = 500; f[x_] := 1 + Log[1 + Sum[x^e * (DivisorSigma[0, e] - DivisorSigma[0, e - 1]), {e, 2, em}]]; c = Rest[ CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m] ]; RealDigits[ Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals lim_{k->oo} A145353(k)/k.
Equals Product_{p prime} (1 + Sum_{e >= 2} p^(-e) * (d(e) - d(e-1))), where d(e) is the number of divisors of e (A000005).
Equals Product_{p prime} (1 - 1/p) * (2 - (log(p-1) + QPolyGamma(0, 1, 1/p)) / log(p)). - Vaclav Kotesovec, Feb 27 2023
From Amiram Eldar, Dec 24 2024: (Start)
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} k/uphi(k) = lim_{m->oo} (1/m) * Sum_{k=1..m} A319677(k)/A319676(k), where uphi(k) is the unitary totient function (A047994).
Equals lim_{m->oo} (1/log(m)) * Sum_{k=1..m} 1/uphi(k) = lim_{m->oo} (1/log(m)) * A379517(m)/A379518(m).
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A361967(k).
Equals Product_{p prime} ((1-1/p) * (1 + Sum_{k>=1} 1/(p^k-1))).
Equals Product_{p prime} (1 + (1-1/p) * Sum_{k>=1} 1/(p^k*(p^k-1))). (End)

Extensions

More digits from Vaclav Kotesovec, Jun 13 2021

A332883 If n = Product (p_j^k_j) then a(n) = denominator of Product (1 + 1/p_j^k_j).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 3, 13, 7, 5, 16, 17, 3, 19, 2, 21, 11, 23, 2, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 35, 18, 37, 19, 39, 20, 41, 7, 43, 11, 3, 23, 47, 12, 49, 25, 17, 26, 53, 9, 55, 7, 57, 29, 59, 1, 61, 31, 63, 64, 65, 11, 67, 34, 23, 35
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Denominator of sum of reciprocals of unitary divisors of n.

Examples

			1, 3/2, 4/3, 5/4, 6/5, 2, 8/7, 9/8, 10/9, 9/5, 12/11, 5/3, 14/13, 12/7, 8/5, 17/16, ...
		

Crossrefs

Cf. A007947, A017666, A034448, A077610, A319677, A323166, A327158 (positions of 1's), A332881, A332882 (numerators).

Programs

  • Maple
    a:= n-> denom(mul(1+i[1]^i[2], i=ifactors(n)[2])/n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]]^#[[2]] & /@ FactorInteger[n])], {n, 1, 70}] // Denominator
    Table[Sum[If[GCD[d, n/d] == 1,  1/d, 0], {d, Divisors[n]}], {n, 1, 70}] // Denominator
  • PARI
    a(n) = denominator(sumdiv(n, d, if (gcd(d, n/d)==1, 1/d))); \\ Michel Marcus, Feb 28 2020

Formula

a(n) = denominator of Sum_{d|n, gcd(d, n/d) = 1} 1/d.
a(n) = denominator of usigma(n)/n.
a(p) = p, where p is prime.
a(n) = n / A323166(n). - Antti Karttunen, Nov 13 2021

A319676 Numerator of A047994(n)/n where A047994 is the unitary totient function.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 6, 7, 8, 2, 10, 1, 12, 3, 8, 15, 16, 4, 18, 3, 4, 5, 22, 7, 24, 6, 26, 9, 28, 4, 30, 31, 20, 8, 24, 2, 36, 9, 8, 7, 40, 2, 42, 15, 32, 11, 46, 5, 48, 12, 32, 9, 52, 13, 8, 3, 12, 14, 58, 2, 60, 15, 16, 63, 48, 10, 66, 12, 44, 12, 70, 7, 72, 18, 16
Offset: 1

Views

Author

Michel Marcus, Sep 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    uphi[n_] := Product[{p, e} = pe; p^e - 1, {pe, FactorInteger[n]}];
    a[n_] := If[n == 1, 1, Numerator[uphi[n]/n]];
    Array[a, 100] (* Jean-François Alcover, Jan 10 2022 *)
  • PARI
    a(n)=my(f=factor(n)~); numerator(prod(i=1, #f, f[1, i]^f[2, i]-1)/n);

Formula

a(p) = p-1, for p prime (see A006093).
a(A002110(n)) = A038110(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A319677(k) = Product_{p prime} (1 - 1/(p*(p+1))) = 0.7044422... (A065463). - Amiram Eldar, Nov 21 2022
Showing 1-4 of 4 results.