cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A331175 Number of values of k, 1 <= k <= n, with A109395(k) = A109395(n), where A109395(n) = n/gcd(n, phi(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 3, 2, 1, 4, 1, 2, 1, 4, 1, 5, 1, 3, 3, 2, 1, 6, 4, 2, 7, 4, 1, 2, 1, 5, 1, 2, 1, 8, 1, 2, 3, 5, 1, 5, 1, 3, 3, 2, 1, 9, 6, 6, 1, 4, 1, 10, 4, 7, 3, 2, 1, 4, 1, 2, 8, 6, 1, 2, 1, 3, 1, 2, 1, 11, 1, 2, 5, 4, 1, 5, 1, 7, 12, 2, 1, 9, 1, 2, 1, 5, 1, 6, 1, 3, 3, 2, 1, 13, 1, 10, 3, 8, 1, 2, 1, 6, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A109395.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A109395(n) = n/gcd(n, eulerphi(n));
    v331175 = ordinal_transform(vector(up_to, n, A109395(n)));
    A331175(n) = v331175[n];

Formula

For n >= 1, a(2^n) = n, a(A003277(n)) = 1.

A319677 Denominator of A047994(n)/n where A047994 is the unitary totient function.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 2, 13, 7, 15, 16, 17, 9, 19, 5, 7, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 32, 33, 17, 35, 3, 37, 19, 13, 10, 41, 7, 43, 22, 45, 23, 47, 8, 49, 25, 51, 13, 53, 27, 11, 4, 19, 29, 59, 5, 61, 31, 21, 64, 65, 33, 67, 17, 69, 35, 71
Offset: 1

Views

Author

Michel Marcus, Sep 26 2018

Keywords

Crossrefs

Cf. A047994, A030163, A305678, A319481, A319676 (numerators), A323409, A331177 (ordinal transform).

Programs

  • Mathematica
    uphi[n_] := Product[{p, e} = pe; p^e - 1, {pe, FactorInteger[n]}];
    a[n_] := Denominator[uphi[n]/n];
    Array[a, 100] (* Jean-François Alcover, Jan 10 2022 *)
  • PARI
    a(n)=my(f=factor(n)~); denominator(prod(i=1, #f, f[1, i]^f[2, i]-1)/n);

Formula

a(p) = p, for p prime.
a(A002110(n)) = A060753(n).
a(n) = n / A323409(n) = n / gcd(n, A047994(n)). - Antti Karttunen, Jan 11 2020

A330739 Number of values of k, 1 <= k <= n, with A047994(k) = A047994(n), where A047994 is unitary totient function uphi(n).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 2, 3, 2, 1, 1, 1, 4, 1, 2, 1, 4, 1, 1, 1, 2, 2, 3, 1, 3, 4, 2, 1, 5, 1, 2, 1, 2, 1, 3, 1, 5, 2, 2, 1, 2, 2, 2, 3, 3, 1, 6, 1, 4, 2, 1, 3, 2, 1, 4, 1, 7, 1, 1, 1, 4, 5, 1, 2, 8, 1, 3, 1, 3, 1, 5, 1, 3, 2, 2, 1, 3, 2, 2, 4, 2, 3, 1, 1, 6, 2, 4, 1, 4, 1, 1, 7
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A047994.

Crossrefs

Cf. A047994.
Cf. also A081373 (ordinal transform of Euler totient function phi), A331177.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    v330739 = ordinal_transform(vector(up_to, n, A047994(n)));
    A330739(n) = v330739[n];
Showing 1-3 of 3 results.