A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.
1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1
A318314 Denominators of the sequence whose Dirichlet convolution with itself yields A068068, number of odd unitary divisors of n.
1, 2, 1, 8, 1, 2, 1, 16, 2, 2, 1, 8, 1, 2, 1, 128, 1, 4, 1, 8, 1, 2, 1, 16, 2, 2, 2, 8, 1, 2, 1, 256, 1, 2, 1, 16, 1, 2, 1, 16, 1, 2, 1, 8, 2, 2, 1, 128, 2, 4, 1, 8, 1, 4, 1, 16, 1, 2, 1, 8, 1, 2, 2, 1024, 1, 2, 1, 8, 1, 2, 1, 32, 1, 2, 2, 8, 1, 2, 1, 128, 8, 2, 1, 8, 1, 2, 1, 16, 1, 4, 1, 8, 1, 2, 1, 256, 1, 4, 2, 16, 1, 2, 1, 16, 1
Offset: 1
Comments
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Mathematica
a35[n_] := (1 - (-1)^n)/2; a120[n_] := DigitCount[n, 2, 1]; a[n_] := Product[{p, e} = pe; 2^(((2 - a35[p])*e) - a120[e]), {pe, FactorInteger[n]}]; a /@ Range[100] (* Jean-François Alcover, Sep 19 2019 *)
-
PARI
up_to = 16384; A068068(n) = (2^omega(n>>valuation(n, 2))); \\ From A068068 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v318313_15 = DirSqrt(vector(up_to, n, A068068(n))); A318313(n) = numerator(v318313_15[n]); A318314(n) = denominator(v318313_15[n]);
Formula
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A068068(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318315(n).
From Antti Karttunen, Sep 03-07 2018: (Start, conjectured formulas)
a(n) = A006519(n) * A317934(n), thus multiplicative with a(2^e) = 2^A005187(e), a(p^e) = 2^A011371(e) for odd primes p.
(End)
A317930 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A234840, which is a multiplicative permutation of natural numbers.
1, 3, 1, 27, 19, 3, 61, 135, 3, 57, 11, 27, 281, 183, 19, 2835, 101, 9, 5, 513, 61, 33, 263, 135, 1083, 843, 5, 1647, 29, 57, 59, 15309, 11, 303, 1159, 81, 1811, 15, 281, 2565, 1091, 183, 157, 297, 57, 789, 409, 2835, 11163, 3249, 101, 7587, 541, 15, 209, 8235, 5, 87, 31, 513, 7, 177, 183, 168399, 5339, 33, 1013, 2727
Offset: 1
Comments
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
PARI
up_to = 16384; A234840(n) = if(n<=1,n,my(f = factor(n)); for(i=1, #f~, if(2==f[i,1], f[i,1]++, if(3==f[i,1], f[i,1]--, f[i,1] = prime(-1+A234840(1+primepi(f[i,1])))))); factorback(f)); \\ Antti Karttunen, Aug 23 2018 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v317930aux = DirSqrt(vector(up_to, n, A234840(n))); A317930(n) = numerator(v317930aux[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A234840(n) - Sum_{d|n, d>1, d 1.
A317933 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A034444 (number of unitary divisors of n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Comments
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Vaclav Kotesovec, Graph - the asymptotic ratio (10000 terms)
Crossrefs
Programs
-
PARI
A034444(n) = (2^omega(n)); A317933perA317934(n) = if(1==n,n,(A034444(n)-sumdiv(n,d,if((d>1)&&(d
A317933perA317934(d)*A317933perA317934(n/d),0)))/2); A317933(n) = numerator(A317933perA317934(n)); -
PARI
up_to = 65537; \\ Faster: DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v317933aux = DirSqrt(vector(up_to, n, A034444(n))); A317933(n) = numerator(v317933aux[n]); -
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, ((1+X)/(1-X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A034444(n) - Sum_{d|n, d>1, d 1.
A317940 Numerators of sequence whose Dirichlet convolution with itself yields A046644.
1, 1, 1, 7, 1, 1, 1, 9, 7, 1, 1, 7, 1, 1, 1, 427, 1, 7, 1, 7, 1, 1, 1, 9, 7, 1, 9, 7, 1, 1, 1, 471, 1, 1, 1, 49, 1, 1, 1, 9, 1, 1, 1, 7, 7, 1, 1, 427, 7, 7, 1, 7, 1, 9, 1, 9, 1, 1, 1, 7, 1, 1, 7, 4099, 1, 1, 1, 7, 1, 1, 1, 63, 1, 1, 7, 7, 1, 1, 1, 427, 427, 1, 1, 7, 1, 1, 1, 9, 1, 7, 1, 7, 1, 1, 1, 471, 1, 7, 7, 49, 1, 1, 1, 9, 1
Offset: 1
Comments
Multiplicative because A046644 is.
No negative terms among the first 2^20 terms. Is the sequence nonnegative?
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. A005187(n) = { my(s=n); while(n>>=1, s+=n); s; }; A046644(n) = factorback(apply(e -> 2^A005187(e),factor(n)[,2])); v317940aux = DirSqrt(vector(up_to, n, A046644(n))); A317940(n) = numerator(v317940aux[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A046644(n) - Sum_{d|n, d>1, d 1.
A318321 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A003961.
1, 3, 5, 27, 7, 15, 11, 135, 75, 21, 13, 135, 17, 33, 35, 2835, 19, 225, 23, 189, 55, 39, 29, 675, 147, 51, 625, 297, 31, 105, 37, 15309, 65, 57, 77, 2025, 41, 69, 85, 945, 43, 165, 47, 351, 525, 87, 53, 14175, 363, 441, 95, 459, 59, 1875, 91, 1485, 115, 93, 61, 945, 67, 111, 825, 168399, 119, 195, 71, 513, 145, 231, 73
Offset: 1
Comments
Multiplicative because A003961 is.
Links
Programs
-
PARI
up_to = 16384; A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v318321aux = DirSqrt(vector(up_to, n, A003961(n))); A318321(n) = numerator(v318321aux[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A003961(n) - Sum_{d|n, d>1, d 1.
A317929 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A235199, which is a multiplicative permutation of natural numbers.
1, 1, 3, 3, 7, 3, 5, 5, 27, 7, 17, 9, 13, 5, 21, 35, 11, 27, 19, 21, 15, 17, 23, 15, 147, 13, 135, 15, 43, 21, 59, 63, 51, 11, 35, 81, 37, 19, 39, 35, 41, 15, 29, 51, 189, 23, 73, 105, 75, 147, 33, 39, 53, 135, 119, 25, 57, 43, 31, 63, 61, 59, 135, 231, 91, 51, 67, 33, 69, 35, 107, 135, 47, 37, 441, 57, 85, 39
Offset: 1
Comments
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
PARI
up_to = 16384; A235199(n) = if(n<=4,n,my(f = factor(n)); for(i=1, #f~, if(5==f[i,1], f[i,1] += 2, if(7==f[i,1], f[i,1] -= 2, my(k=primepi(f[i,1])); if(k>4, f[i,1] = prime(A235199(k)))))); factorback(f)); DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v317929aux = DirSqrt(vector(up_to, n, A235199(n))); A317929(n) = numerator(v317929aux[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A235199(n) - Sum_{d|n, d>1, d 1.
A317936 Numerators of sequence whose Dirichlet convolution with itself yields A100995 + A063524, that is, the characteristic function of A000961 (prime powers).
1, 1, 1, 7, 1, -1, 1, 17, 7, -1, 1, -5, 1, -1, -1, 139, 1, -5, 1, -5, -1, -1, 1, -5, 7, -1, 17, -5, 1, 3, 1, 263, -1, -1, -1, -31, 1, -1, -1, -5, 1, 3, 1, -5, -5, -1, 1, 19, 7, -5, -1, -5, 1, -5, -1, -5, -1, -1, 1, 9, 1, -1, -5, 995, -1, 3, 1, -5, -1, 3, 1, -53, 1, -1, -5, -5, -1, 3, 1, 19, 139, -1, 1, 9, -1, -1, -1, -5, 1, 9
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A100995(n) - Sum_{d|n, d>1, d 1.
A317938 Numerators of rational valued sequence whose Dirichlet convolution with itself yields sequence A001222 (bigomega n) + A063524 (1, 0, 0, 0, ...).
1, 1, 1, 7, 1, 3, 1, 17, 7, 3, 1, 11, 1, 3, 3, 139, 1, 11, 1, 11, 3, 3, 1, 15, 7, 3, 17, 11, 1, 3, 1, 263, 3, 3, 3, 17, 1, 3, 3, 15, 1, 3, 1, 11, 11, 3, 1, 83, 7, 11, 3, 11, 1, 15, 3, 15, 3, 3, 1, -3, 1, 3, 11, 995, 3, 3, 1, 11, 3, 3, 1, 11, 1, 3, 11, 11, 3, 3, 1, 83, 139, 3, 1, -3, 3, 3, 3, 15, 1, -3, 3, 11, 3, 3, 3, 189, 1, 11, 11, 17, 1, 3, 1, 15, 3
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
A317938aux(n) = if(1==n,n,(bigomega(n)-sumdiv(n,d,if((d>1)&&(d
A317938aux(d)*A317938aux(n/d),0)))/2); A317938(n) = numerator(A317938aux(n)); -
PARI
\\ Memoized implementation: memo317938 = Map(); A317938aux(n) = if(1==n,n,if(mapisdefined(memo317938,n),mapget(memo317938,n),my(v = (bigomega(n)-sumdiv(n,d,if((d>1)&&(d
A317938aux(d)*A317938aux(n/d),0)))/2); mapput(memo317938,n,v); (v)));
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001222(n) - Sum_{d|n, d>1, d 1.
A317939 Numerators of sequence whose Dirichlet convolution with itself yields A080339 = A010051 (characteristic function of primes) + A063524 (1, 0, 0, 0, ...).
1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 3, 1, -1, -1, -5, 1, 3, 1, 3, -1, -1, 1, -5, -1, -1, 1, 3, 1, 3, 1, 7, -1, -1, -1, -15, 1, -1, -1, -5, 1, 3, 1, 3, 3, -1, 1, 35, -1, 3, -1, 3, 1, -5, -1, -5, -1, -1, 1, -15, 1, -1, 3, -21, -1, 3, 1, 3, -1, 3, 1, 35, 1, -1, 3, 3, -1, 3, 1, 35, -5, -1, 1, -15, -1, -1, -1, -5, 1, -15, -1, 3, -1, -1, -1, -63, 1, 3, 3
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
up_to = 65537; DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v317939aux = DirSqrt(vector(up_to, n, if(1==n,1,isprime(n)))); A317939(n) = numerator(v317939aux[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A010051(n) - Sum_{d|n, d>1, d 1.
Comments
Links
Crossrefs
Programs
Mathematica
PARI
PARI
PARI
Scheme
Formula