A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.
1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1
A317937 Numerators of sequence whose Dirichlet convolution with itself yields sequence A001221 (omega n) + A063524 (1, 0, 0, 0, ...).
1, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 7, 1, 3, 3, 35, 1, 7, 1, 7, 3, 3, 1, 11, 3, 3, 5, 7, 1, 3, 1, 63, 3, 3, 3, 9, 1, 3, 3, 11, 1, 3, 1, 7, 7, 3, 1, 75, 3, 7, 3, 7, 1, 11, 3, 11, 3, 3, 1, 1, 1, 3, 7, 231, 3, 3, 1, 7, 3, 3, 1, 19, 1, 3, 7, 7, 3, 3, 1, 75, 35, 3, 1, 1, 3, 3, 3, 11, 1, 1, 3, 7, 3, 3, 3, 133, 1, 7, 7, 9, 1, 3, 1, 11, 3
Offset: 1
Comments
The first negative term is a(210) = -7.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
A317937aux(n) = if(1==n,n,(omega(n)-sumdiv(n,d,if((d>1)&&(d
A317937aux(d)*A317937aux(n/d),0)))/2); A317937(n) = numerator(A317937aux(n)); -
PARI
\\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u). DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
Andrew Howroyd, Aug 13 2018
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001221(n) - Sum_{d|n, d>1, d 1.
A318366 a(n) = Sum_{d|n} bigomega(d)*bigomega(n/d).
0, 0, 0, 1, 0, 2, 0, 4, 1, 2, 0, 8, 0, 2, 2, 10, 0, 8, 0, 8, 2, 2, 0, 20, 1, 2, 4, 8, 0, 12, 0, 20, 2, 2, 2, 24, 0, 2, 2, 20, 0, 12, 0, 8, 8, 2, 0, 40, 1, 8, 2, 8, 0, 20, 2, 20, 2, 2, 0, 34, 0, 2, 8, 35, 2, 12, 0, 8, 2, 12, 0, 52, 0, 2, 8, 8, 2, 12, 0, 40, 10, 2, 0, 34, 2, 2, 2, 20, 0, 34, 2, 8, 2, 2, 2
Offset: 1
Keywords
Comments
Dirichlet convolution of A001222 with itself.
Examples
24 has 8 divisors, namely 1, 2, 3, 4, 6, 8, 12, 24, and four prime factors counted with multiplicity. The divisors have 0, 1, 1, 2, 2, 3, 3, 4 divisors respectively. So a(24) = 0 * (4 - 0) + 1 * (4 - 1) + 1 * (4 - 1) + 2 * (4 - 2) + 2 * (4 - 2) + 3 * (4 - 3) + 4 * (4 - 4) = 0 + 3 + 3 + 4 + 4 + 3 + 3 + 0 = 20. - _David A. Corneth_, Jan 12 2019
Links
Crossrefs
Programs
-
Maple
f:= proc(n) local F,G,t,x; F:= map(t -> t[2], ifactors(n)[2]); G:= unapply(normal(mul((1-x^(t+1))/(1-x), t = F)),x); (convert(F,`+`)-1)*D(G)(1) - (D@@2)(G)(1); end proc: map(f, [$1..100]); # Robert Israel, Jan 17 2019
-
Mathematica
Table[Sum[PrimeOmega[d] PrimeOmega[n/d], {d, Divisors[n]}], {n, 95}]
-
PARI
a(n) = sumdiv(n, d, bigomega(d)*bigomega(n/d)); \\ Michel Marcus, Aug 25 2018
-
PARI
a(n) = bn = bigomega(n); sumdiv(n, d, bd = bigomega(d); bd * (bn - bd)) \\ David A. Corneth, Jan 12 2019
Comments
Links
Crossrefs
Programs
Mathematica
PARI
PARI
PARI
Scheme
Formula