A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.
1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1
A317937 Numerators of sequence whose Dirichlet convolution with itself yields sequence A001221 (omega n) + A063524 (1, 0, 0, 0, ...).
1, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 7, 1, 3, 3, 35, 1, 7, 1, 7, 3, 3, 1, 11, 3, 3, 5, 7, 1, 3, 1, 63, 3, 3, 3, 9, 1, 3, 3, 11, 1, 3, 1, 7, 7, 3, 1, 75, 3, 7, 3, 7, 1, 11, 3, 11, 3, 3, 1, 1, 1, 3, 7, 231, 3, 3, 1, 7, 3, 3, 1, 19, 1, 3, 7, 7, 3, 3, 1, 75, 35, 3, 1, 1, 3, 3, 3, 11, 1, 1, 3, 7, 3, 3, 3, 133, 1, 7, 7, 9, 1, 3, 1, 11, 3
Offset: 1
Comments
The first negative term is a(210) = -7.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
A317937aux(n) = if(1==n,n,(omega(n)-sumdiv(n,d,if((d>1)&&(d
A317937aux(d)*A317937aux(n/d),0)))/2); A317937(n) = numerator(A317937aux(n)); -
PARI
\\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u). DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
Andrew Howroyd, Aug 13 2018
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001221(n) - Sum_{d|n, d>1, d 1.
A317936 Numerators of sequence whose Dirichlet convolution with itself yields A100995 + A063524, that is, the characteristic function of A000961 (prime powers).
1, 1, 1, 7, 1, -1, 1, 17, 7, -1, 1, -5, 1, -1, -1, 139, 1, -5, 1, -5, -1, -1, 1, -5, 7, -1, 17, -5, 1, 3, 1, 263, -1, -1, -1, -31, 1, -1, -1, -5, 1, 3, 1, -5, -5, -1, 1, 19, 7, -5, -1, -5, 1, -5, -1, -5, -1, -1, 1, 9, 1, -1, -5, 995, -1, 3, 1, -5, -1, 3, 1, -53, 1, -1, -5, -5, -1, 3, 1, 19, 139, -1, 1, 9, -1, -1, -1, -5, 1, 9
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A100995(n) - Sum_{d|n, d>1, d 1.
Comments
Links
Crossrefs
Programs
Mathematica
PARI
PARI
PARI
Scheme
Formula