cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A181116 Triangle T(n,k) read by rows. T(n,k) = A046643(A126988).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 3, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 5, 3, 0, 1, 0, 0, 0, 1, 3, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 3, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Mats Granvik, Oct 04 2010

Keywords

Comments

Numerator in fraction A181116/A181117. A051731=(A181116/A181117)*(A181116/A181117).

Examples

			Triangle starts:
1,
1,1,
1,0,1,
3,1,0,1,
1,0,0,0,1,
1,1,1,0,0,1,
1,0,0,0,0,0,1,
5,3,0,1,0,0,0,1,
3,0,1,0,0,0,0,0,1,
1,1,0,0,1,0,0,0,0,1,
1,0,0,0,0,0,0,0,0,0,1,
3,1,3,1,0,1,0,0,0,0,0,1,
1,0,0,0,0,0,0,0,0,0,0,0,1,
1,1,0,0,0,0,1,0,0,0,0,0,0,1,
1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,
		

Crossrefs

A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.

Original entry on oeis.org

1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1

Views

Author

Keywords

Comments

From Antti Karttunen, Aug 21 2018: (Start)
a(n) is the denominator of any rational-valued sequence f(n) which has been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d
Proof:
Proof is by induction. We assume as our induction hypothesis that the given multiplicative formula for A046644 (resp. additive formula for A046645) holds for all proper divisors d|n, dA046645(p) = 1. [Remark: for squares of primes, f(p^2) = (4*b(p^2) - 1)/8, thus a(p^2) = 8.]
First we note that A005187(x+y) <= A005187(x) + A005187(y), with equivalence attained only when A004198(x,y) = 0, that is, when x and y do not have any 1-bits in the shared positions. Let m = Sum_{e} A005187(e), with e ranging over the exponents in prime factorization of n.
For [case A] any n in A268388 it happens that only when d (and thus also n/d) are infinitary divisors of n will Sum_{e} A005187(e) [where e now ranges over the union of multisets of exponents in the prime factorizations of d and n/d] attain value m, which is the maximum possible for such sums computed for all divisor pairs d and n/d. For any n in A268388, A037445(n) = 2^k, k >= 2, thus A037445(n) - 2 = 2 mod 4 (excluding 1 and n from the count, thus -2). Thus, in the recursive formula above, the maximal denominator that occurs in the sum is 2^m which occurs k times, with k being an even number, but not a multiple of 4, thus the factor (1/2) in the front of the whole sum will ensure that the denominator of the whole expression is 2^m [which thus is equal to 2^A046645(n) = a(n)].
On the other hand [case B], for squares in A050376 (A082522, numbers of the form p^(2^k) with p prime and k>0), all the sums A005187(x)+A005187(y), where x+y = 2^k, 0 < x <= y < 2^k are less than A005187(2^k), thus it is the lonely "middle pair" f(p^(2^(k-1))) * f(p^(2^(k-1))) among all the pairs f(d)*f(n/d), 1 < d < n = p^(2^k) which yields the maximal denominator. Furthermore, as it occurs an odd number of times (only once), the common factor (1/2) for the whole sum will increase the exponent of 2 in denominator by one, which will be (2*A005187(2^(k-1))) + 1 = A005187(2^k) = A046645(p^(2^k)).
(End)
From Antti Karttunen, Aug 21 2018: (Start)
The following list gives a few such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n). Here ε stands for sequence A063524 (1, 0, 0, ...).
Numerators Dirichlet convolution of numerator(n)/a(n) yields
------- -----------
(End)
This sequence gives an upper bound for the denominators of any rational-valued sequence obtained as the "Dirichlet Square Root" of any integer-valued sequence. - Andrew Howroyd, Aug 23 2018

Crossrefs

See A046643 for more details. See also A046645, A317940.
Cf. A299150, A299152, A317832, A317926, A317932, A317934 (for denominator sequences of other similar constructions).

Programs

Formula

From Antti Karttunen, Jul 08 2017: (Start)
Multiplicative with a(p^n) = 2^A005187(n).
a(1) = 1; for n > 1, a(n) = A000079(A005187(A067029(n))) * a(A028234(n)).
a(n) = A000079(A046645(n)).
(End)
Sum_{j=1..n} A046643(j)/A046644(j) ~ n / sqrt(Pi*log(n)) * (1 + (1 - gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 04 2025

A299150 Denominators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 8, 2, 4, 4, 2, 2, 4, 8, 2, 16, 4, 2, 4, 2, 8, 4, 2, 4, 16, 2, 2, 4, 4, 2, 4, 2, 4, 16, 2, 2, 16, 8, 8, 4, 4, 2, 16, 4, 4, 4, 2, 2, 8, 2, 2, 16, 16, 4, 4, 2, 4, 4, 4, 2, 16, 2, 2, 16, 4, 4, 4, 2, 16, 128, 2, 2
Offset: 1

Author

Gus Wiseman, Feb 03 2018

Keywords

Examples

			Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
		

Programs

  • Mathematica
    nn=50;
    sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
    f[p_, e_] := 2^((1 + Mod[p, 2])*e - DigitCount[e, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n)={my(v=factor(n)[,2]); denominator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
    
  • PARI
    A299150(n) = { my(f = factor(n), m=1); for(i=1, #f~, m *= 2^(((1+(f[i,1]%2))*f[i,2]) - hammingweight(f[i,2]))); (m); }; \\ Antti Karttunen, Sep 03 2018
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 08 2025

Formula

a(n) = denominator(n*A317848(n)/A165825(n)) = A165825(n)/(A037445(n) * A006519(n)). - Andrew Howroyd, Aug 09 2018
a(n) = A046644(n)/A006519(n). - Andrew Howroyd and Antti Karttunen, Aug 30 2018
From Antti Karttunen, Sep 03 2018: (Start)
a(n) = 2^A318440(n).
Multiplicative with a(2^e) = 2^A011371(e), a(p^e) = 2^A005187(e) for odd primes p.
Multiplicative with a(p^e) = 2^(((1+A000035(p))*e)-A000120(e)) for all primes p.
(End)

Extensions

Keyword:mult added by Andrew Howroyd, Aug 09 2018

A046645 a(n) = log_2(A046644(n)); also the 2-adic valuation of A046644(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 7, 1, 4, 1, 4, 2, 2, 1, 5, 3, 2, 4, 4, 1, 3, 1, 8, 2, 2, 2, 6, 1, 2, 2, 5, 1, 3, 1, 4, 4, 2, 1, 8, 3, 4, 2, 4, 1, 5, 2, 5, 2, 2, 1, 5, 1, 2, 4, 10, 2, 3, 1, 4, 2, 3, 1, 7, 1, 2, 4, 4, 2, 3, 1, 8, 7, 2, 1, 5, 2, 2, 2, 5, 1, 5, 2, 4, 2
Offset: 1

Keywords

Comments

A268375 gives numbers n for which a(n) = A289617(n) = A005187(A001222(n)). - Antti Karttunen, Jul 08 2017

Crossrefs

Programs

Formula

a(n) = A007814(A046644(n)). - Michel Marcus, Apr 16 2015
Additive with a(p^n) = A005187(n). - Antti Karttunen, Jul 08 2017
a(n) = A293447(A293442(n)). - Antti Karttunen, Nov 10 2017
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 1.410258867603361890498..., where f(x) = -x + Sum_{k>=0} (2^(k+1)-1)*x^(2^k)/(1+x^(2^k)). - Amiram Eldar, Sep 29 2023

A256689 From third root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose cube is zeta function; sequence gives denominator of b(n).

Original entry on oeis.org

1, 3, 3, 9, 3, 9, 3, 81, 9, 9, 3, 27, 3, 9, 9, 243, 3, 27, 3, 27, 9, 9, 3, 243, 9, 9, 81, 27, 3, 27, 3, 729, 9, 9, 9, 81, 3, 9, 9, 243, 3, 27, 3, 27, 27, 9, 3, 729, 9, 27, 9, 27, 3, 243, 9, 243, 9, 9, 3, 81, 3, 9, 27, 6561, 9, 27, 3, 27, 9, 27, 3, 729, 3, 9, 27, 27, 9, 27, 3, 729, 243, 9, 3, 81, 9, 9, 9, 243, 3, 81, 9, 27, 9, 9, 9, 2187, 3, 27, 27, 81
Offset: 1

Author

Wolfgang Hintze, Apr 08 2015

Keywords

Comments

Dirichlet g.f. of A256688(n)/A256689(n) is (zeta(x))^(1/3).
Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...

Examples

			b(1), b(2), ... = 1, 1/3, 1/3, 2/9, 1/3, 1/9, 1/3, 14/81, 2/9, 1/9, 1/3, 2/27, 1/3, 1/9, 1/9, 35/243, ...
		

Crossrefs

Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Programs

  • Mathematica
    k = 3;
    c[1, n_] = b[n];
    c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]
    nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];
    sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
    t = Table[b[n], {n, 1, nn}] /. sol[[1]];
    num = Numerator[t] (* A256688 *)
    den = Denominator[t] (* A256689 *)
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-X)^(1/3))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025

Formula

with k = 3;
zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = 1 for b(m);
a(n) = denominator(b(n)).
Sum_{j=1..n} A256688(j)/A256689(j) ~ n / (Gamma(1/3) * log(n)^(2/3)) * (1 + (2*(1 - gamma/3))/(3*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 04 2025

A256688 From third root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose cube is zeta function; sequence gives numerator of b(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 14, 2, 1, 1, 2, 1, 1, 1, 35, 1, 2, 1, 2, 1, 1, 1, 14, 2, 1, 14, 2, 1, 1, 1, 91, 1, 1, 1, 4, 1, 1, 1, 14, 1, 1, 1, 2, 2, 1, 1, 35, 2, 2, 1, 2, 1, 14, 1, 14, 1, 1, 1, 2, 1, 1, 2, 728, 1, 1, 1, 2, 1, 1, 1, 28, 1, 1, 2, 2, 1, 1, 1, 35, 35, 1, 1, 2, 1, 1, 1, 14, 1, 2, 1, 2, 1, 1, 1, 91, 1, 2, 2, 4
Offset: 1

Author

Wolfgang Hintze, Apr 08 2015

Keywords

Comments

Dirichlet g.f. of A256688(n)/A256689(n) is (zeta(x))^(1/3).
Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...

Examples

			b(1), b(2), ... = 1, 1/3, 1/3, 2/9, 1/3, 1/9, 1/3, 14/81, 2/9, 1/9, 1/3, 2/27, 1/3, 1/9, 1/9, 35/243, ...
		

Crossrefs

Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Programs

  • Mathematica
    k = 3;
    c[1, n_] = b[n];
    c[k_, n_] := DivisorSum[n, c[1,#1]*c[k - 1, n/#1] & ]
    nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];
    sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
    t = Table[b[n], {n, 1, nn}] /. sol[[1]];
    num = Numerator[t] (* A256688 *)
    den = Denominator[t] (* A256689 *)
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(1/3))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025

Formula

with k = 3;
zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = 1 for b(m);
a(n) = numerator(b(n)).
Sum_{j=1..n} A256688(j)/A256689(j) ~ n / (Gamma(1/3) * log(n)^(2/3)) * (1 + (2*(1 - gamma/3))/(3*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 04 2025

A256691 From fourth root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fourth power is zeta function; sequence gives denominator of b(n).

Original entry on oeis.org

1, 4, 4, 32, 4, 16, 4, 128, 32, 16, 4, 128, 4, 16, 16, 2048, 4, 128, 4, 128, 16, 16, 4, 512, 32, 16, 128, 128, 4, 64, 4, 8192, 16, 16, 16, 1024, 4, 16, 16, 512, 4, 64, 4, 128, 128, 16, 4, 8192, 32, 128, 16, 128, 4, 512, 16, 512, 16, 16, 4, 512, 4, 16, 128, 65536, 16, 64, 4, 128, 16, 64, 4, 4096, 4, 16, 128, 128, 16, 64, 4, 8192, 2048, 16, 4, 512, 16, 16, 16, 512, 4, 512, 16, 128, 16, 16, 16, 32768, 4, 128, 128, 1024
Offset: 1

Author

Wolfgang Hintze, Apr 08 2015

Keywords

Comments

Dirichlet g.f. of A256690(n)/A256691(n) is (zeta(x))^(1/4).
Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...

Examples

			b(1), b(2), ... = 1, 1/4, 1/4, 5/32, 1/4, 1/16, 1/4, 15/128, 5/32, 1/16, 1/4, 5/128, 1/4, 1/16, 1/16, 195/2048, ...
		

Crossrefs

Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Programs

  • Mathematica
    k = 4;
    c[1, n_] = b[n];
    c[k_, n_] := DivisorSum[n, c[1,#1]*c[k - 1, n/#1] & ]
    nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];
    sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
    t = Table[b[n], {n, 1, nn}] /. sol[[1]];
    num = Numerator[t] (* A256690 *)
    den = Denominator[t] (* A256691 *)
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-X)^(1/4))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025

Formula

with k = 4;
zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = 1 for b(m);
a(n) = denominator(b(n)).
Sum_{j=1..n} A256690(j)/A256691(j) ~ n / (Gamma(1/4) * log(n)^(3/4)) * (1 + (3*(1 - gamma/4))/(4*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 04 2025

A256693 From fifth root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fifth power is zeta function; sequence gives denominator of b(n).

Original entry on oeis.org

1, 5, 5, 25, 5, 25, 5, 125, 25, 25, 5, 125, 5, 25, 25, 625, 5, 125, 5, 125, 25, 25, 5, 625, 25, 25, 125, 125, 5, 125, 5, 15625, 25, 25, 25, 625, 5, 25, 25, 625, 5, 125, 5, 125, 125, 25, 5, 3125, 25, 125, 25, 125, 5, 625, 25, 625, 25, 25, 5, 625, 5, 25, 125, 78125, 25, 125, 5, 125, 25, 125, 5, 3125, 5, 25, 125, 125, 25, 125, 5, 3125, 625, 25, 5, 625, 25, 25, 25, 625, 5, 625, 25, 125, 25, 25, 25, 78125, 5, 125, 125, 625
Offset: 1

Author

Wolfgang Hintze, Apr 08 2015

Keywords

Comments

Dirichlet g.f. of A256692(n)/A256693(n) is (zeta(x))^(1/5).
Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...
In general, for m > 0, if Dirichlet g.f. is zeta(s)^m, then Sum_{j=1..n} a(j) ~ n*log(n)^(m-1)/Gamma(m) * (1 + (m-1)*(m*gamma - 1)/log(n)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 04 2025

Examples

			b(1), b(2), ... =
1, 1/5, 1/5, 3/25, 1/5, 1/25, 1/5, 11/125, 3/25, 1/25, 1/5, 3/125, 1/5, 1/25, 1/25, 44/625, 1/5, 3/125, 1/5, 3/125, 1/25, 1/25, 1/5, 11/625
		

Crossrefs

Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Programs

  • Mathematica
    k = 5;
    c[1, n_] = b[n];
    c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]
    nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];
    sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
    t = Table[b[n], {n, 1, nn}] /. sol[[1]];
    num = Numerator[t] (* A256692 *)
    den = Denominator[t] (* A256693 *)
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-X)^(1/5))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025

Formula

with k = 5;
zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = 1 for b(m);
a(n) = denominator(b(n)).
Sum_{j=1..n} A256692(j)/A256693(j) ~ n / (Gamma(1/5) * log(n)^(4/5)) * (1 + (4*(1 - gamma/5))/(5*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 04 2025

A299149 Numerators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 3, 3, 5, 3, 7, 5, 27, 5, 11, 9, 13, 7, 15, 35, 17, 27, 19, 15, 21, 11, 23, 15, 75, 13, 135, 21, 29, 15, 31, 63, 33, 17, 35, 81, 37, 19, 39, 25, 41, 21, 43, 33, 135, 23, 47, 105, 147, 75, 51, 39, 53, 135, 55, 35, 57, 29, 59, 45, 61, 31, 189, 231, 65, 33
Offset: 1

Author

Gus Wiseman, Feb 03 2018

Keywords

Comments

Dirichlet convolution of a(n)/A046644(n) with itself yields A000265. - Antti Karttunen, Aug 30 2018

Examples

			Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
		

Programs

  • Mathematica
    nn=50;
    sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Numerator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
    odd[n_] := n/2^IntegerExponent[n, 2]; f[p_, e_] := odd[p^e*Binomial[2*e, e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
  • PARI
    a(n)={my(v=factor(n)[,2]); numerator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
    
  • PARI
    \\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u).
    DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dAndrew Howroyd, Aug 09 2018
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator(n*A317848(n)/A165825(n)) = A000265(n*A317848(n)). - Andrew Howroyd, Aug 09 2018
Sum_{k=1..n} A299149(k)/A299150(k) ~ n^2 / (2*sqrt(Pi*log(n))) * (1 + (1-gamma) / (4*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 09 2025

Extensions

Keyword:mult added by Andrew Howroyd, Aug 09 2018

A318649 Numerators of the sequence whose Dirichlet convolution with itself yields squares, A000290.

Original entry on oeis.org

1, 2, 9, 6, 25, 9, 49, 20, 243, 25, 121, 27, 169, 49, 225, 70, 289, 243, 361, 75, 441, 121, 529, 90, 1875, 169, 3645, 147, 841, 225, 961, 252, 1089, 289, 1225, 729, 1369, 361, 1521, 250, 1681, 441, 1849, 363, 6075, 529, 2209, 315, 7203, 1875, 2601, 507, 2809, 3645, 3025, 490, 3249, 841, 3481, 675, 3721, 961, 11907, 924, 4225, 1089
Offset: 1

Author

Antti Karttunen, Aug 31 2018

Keywords

Crossrefs

Cf. A000290, A318512 (denominators).
Cf. also A046643, A299149, A318511, A318651, A318654 (gives the positions of even terms), A318655 (the 2-adic valuation).

Programs

  • PARI
    up_to = 65537;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA318649(n) = numerator(v318649_aux[n]);
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p^2*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * ((n^2) - Sum_{d|n, d>1, d 1.
a(n) = n*A318512(n)*A299149(n)/A299150(n).
Sum_{k=1..n} A318649(k) / A318512(k) ~ n^3/(3*sqrt(Pi*log(n))) * (1 + (1 - 3*gamma/2) / (6*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 09 2025
Showing 1-10 of 26 results. Next