A257091 a(n) = log_5 (A256693(n)).
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 6, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 7, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 5, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 7, 1, 3, 3, 4
Offset: 1
Keywords
Links
- Robert Israel and Wolfgang Hintze, Table of n, a(n) for n = 1..10000 (up to 500 from Wolfgang Hintze)
- MathOverflow, The number of prime factors of a natural number.
Crossrefs
Programs
-
Maple
F:= proc(n) local e,m; add(add(floor(e/5^m),m=0..floor(log[5](e))),e=map(t-> t[2],ifactors(n)[2])); end proc: seq(F(i),i=1..100);
-
Mathematica
F[n_] := Sum[Sum[Floor[e/5^m], {m, 0, Floor[Log[5, e]]}], {e, FactorInteger[n][[All, 2]]}]; F[1] = 0; Array[F, 100] (* Jean-François Alcover, Jun 18 2020, after Maple *)
Formula
5^a(n) = A256693(n).
For n<=10000, if n = Product_i p_i^(e_i) is the prime factorization of n, a(n) = A001222(n) + Sum_i floor(e_i/5). - Robert Israel, May 13 2016
If n = Product_i p_i^(e_i) is the prime factorization of n, a(n) = Sum_{j >= 0} Sum_i floor(e_i/5^j). - Robert Israel, May 16 2016
Comments