A257098 From square root of the inverse of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose square is 1/zeta; sequence gives numerator of b(n).
1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -5, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -7, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 5, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -21, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 5, -5, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 7, -1, 1, 1, 1
Offset: 1
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..500 from Wolfgang Hintze)
- Vaclav Kotesovec, Graph - the asymptotic ratio (10^7 terms)
Crossrefs
Programs
-
Mathematica
k = 2; c[1, n_] = b[n]; c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ] nn = 100; eqs = Table[c[k, n]==MoebiusMu[n], {n, 1, nn}]; sol = Solve[Join[{b[1]==1}, eqs], Table[b[i], {i, 1, nn}], Reals]; t = Table[b[n], {n, 1, nn}] /. sol[[1]]; num = Numerator[t] (* A257098 *) den = Denominator[t] (* A046644 *)
-
PARI
\\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u). DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
Andrew Howroyd, Aug 08 2018 -
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(-1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025
Formula
with k = 2;
zeta(x)^(-1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = mu(n) for b(m);
a(n) = numerator(b(n)).
Sum_{j=1..n} A257098(j)/A046644(j) ~ -n / (2 * sqrt(Pi) * log(n)^(3/2)) * (1 + 3*(gamma/2 + 1)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 05 2025
Comments