A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.
1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1
A299150 Denominators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).
1, 1, 2, 2, 2, 2, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 8, 2, 4, 4, 2, 2, 4, 8, 2, 16, 4, 2, 4, 2, 8, 4, 2, 4, 16, 2, 2, 4, 4, 2, 4, 2, 4, 16, 2, 2, 16, 8, 8, 4, 4, 2, 16, 4, 4, 4, 2, 2, 8, 2, 2, 16, 16, 4, 4, 2, 4, 4, 4, 2, 16, 2, 2, 16, 4, 4, 4, 2, 16, 128, 2, 2
Offset: 1
Examples
Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537 (first 1000 terms from Andrew Howroyd)
Crossrefs
Programs
-
Mathematica
nn=50; sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}]; Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]] f[p_, e_] := 2^((1 + Mod[p, 2])*e - DigitCount[e, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
-
PARI
a(n)={my(v=factor(n)[,2]); denominator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
-
PARI
A299150(n) = { my(f = factor(n), m=1); for(i=1, #f~, m *= 2^(((1+(f[i,1]%2))*f[i,2]) - hammingweight(f[i,2]))); (m); }; \\ Antti Karttunen, Sep 03 2018
-
PARI
for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 08 2025
Formula
a(n) = denominator(n*A317848(n)/A165825(n)) = A165825(n)/(A037445(n) * A006519(n)). - Andrew Howroyd, Aug 09 2018
From Antti Karttunen, Sep 03 2018: (Start)
a(n) = 2^A318440(n).
(End)
Extensions
Keyword:mult added by Andrew Howroyd, Aug 09 2018
A299149 Numerators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).
1, 1, 3, 3, 5, 3, 7, 5, 27, 5, 11, 9, 13, 7, 15, 35, 17, 27, 19, 15, 21, 11, 23, 15, 75, 13, 135, 21, 29, 15, 31, 63, 33, 17, 35, 81, 37, 19, 39, 25, 41, 21, 43, 33, 135, 23, 47, 105, 147, 75, 51, 39, 53, 135, 55, 35, 57, 29, 59, 45, 61, 31, 189, 231, 65, 33
Offset: 1
Comments
Examples
Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537 (first 1000 terms Andrew Howroyd)
- Vaclav Kotesovec, Graph - the asymptotic ratio (65537 terms)
- Wikipedia, Dirichlet convolution.
Crossrefs
Programs
-
Mathematica
nn=50; sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}]; Numerator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]] odd[n_] := n/2^IntegerExponent[n, 2]; f[p_, e_] := odd[p^e*Binomial[2*e, e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
-
PARI
a(n)={my(v=factor(n)[,2]); numerator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
-
PARI
\\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u). DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
Andrew Howroyd, Aug 09 2018 -
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025
Formula
Sum_{k=1..n} A299149(k)/A299150(k) ~ n^2 / (2*sqrt(Pi*log(n))) * (1 + (1-gamma) / (4*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 09 2025
Extensions
Keyword:mult added by Andrew Howroyd, Aug 09 2018
A299151 Numerators of the positive solution to 2^(n-1) = Sum_{d|n} a(d) * a(n/d).
1, 1, 2, 7, 8, 14, 32, 121, 126, 248, 512, 1003, 2048, 4064, 8176, 130539, 32768, 65382, 131072, 261868, 524224, 1048064, 2097152, 4193131, 8388576, 16775168, 33554180, 67104688, 134217728, 268426672, 536870912, 8589802359, 2147482624, 4294934528, 8589934336, 17179801257, 34359738368, 68719345664, 137438949376, 274877643724, 549755813888
Offset: 1
Comments
Numerators of rational valued sequence f whose Dirichlet convolution with itself yields function g(n) = A000079(n-1) = 2^(n-1). - Antti Karttunen, Aug 10 2018
Examples
Sequence begins: 1, 1, 2, 7/2, 8, 14, 32, 121/2, 126, 248, 512, 1003, 2048, 4064, 8176, 130539/8, 32768.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
nn=50; sys=Table[2^(n-1)==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}]; Numerator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
-
PARI
A299151perA299152(n) = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(d
A299151perA299152(d)*A299151perA299152(n/d),0)))/2); A299151(n) = numerator(A299151perA299152(n));
Extensions
More terms from Antti Karttunen, Jul 29 2018
A257099 From third root of the inverse of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose cube is 1/zeta; sequence gives numerator of b(n).
1, -1, -1, -1, -1, 1, -1, -5, -1, 1, -1, 1, -1, 1, 1, -10, -1, 1, -1, 1, 1, 1, -1, 5, -1, 1, -5, 1, -1, -1, -1, -22, 1, 1, 1, 1, -1, 1, 1, 5, -1, -1, -1, 1, 1, 1, -1, 10, -1, 1, 1, 1, -1, 5, 1, 5, 1, 1, -1, -1, -1, 1, 1, -154, 1, -1, -1, 1, 1, -1, -1, 5, -1, 1, 1, 1, 1, -1, -1, 10, -10, 1, -1, -1, 1, 1, 1, 5, -1, -1, 1, 1, 1, 1, 1, 22, -1, 1, 1, 1
Offset: 1
Comments
Dirichlet g.f. of b(n) = a(n)/A256689(n) is (zeta(x))^(-1/3).
Denominator is the same as for Dirichlet g.f. (zeta(x))^(+1/3).
Formula holds for general Dirichlet g.f. zeta(x)^(-1/k) with k = 1, 2, ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..500 from Wolfgang Hintze)
- Vaclav Kotesovec, Graph - the asymptotic ratio (10^7 terms)
Crossrefs
Programs
-
Mathematica
k = 3; c[1, n_] = b[n]; c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ] nn = 100; eqs = Table[c[k, n]==MoebiusMu[n], {n, 1, nn}]; sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals]; t = Table[b[n], {n, 1, nn}] /. sol[[1]]; num = Numerator[t] (* A257099 *) den = Denominator[t] (* A256689 *)
-
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(-1/3))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025
Formula
with k = 3;
zeta(x)^(-1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = mu(n) for b(m);
a(n) = numerator(b(n)).
Sum_{j=1..n} A257099(j)/A256689(j) ~ n / (Gamma(-1/3) * log(n)^(4/3)) * (1 + 4*(gamma/3 + 1)/(3*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 05 2025
A299152 Denominators of the positive solution to 2^(n-1) = Sum_{d|n} a(d) * a(n/d).
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Sequence begins: 1, 1, 2, 7/2, 8, 14, 32, 121/2, 126, 248, 512, 1003, 2048, 4064, 8176, 130539/8, 32768.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
nn=50; sys=Table[2^(n-1)==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}]; Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
-
PARI
up_to = 65537; prepareA299151perA299152(up_to) = { my(vmemo = vector(up_to)); for(n=1,up_to, vmemo[n] = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(d
A299152 = prepareA299151perA299152(up_to); A299151perA299152(n) = v299151perA299152[n]; \\ Or without memoization as: A299151perA299152(n) = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(d A299151perA299152(d)*A299151perA299152(n/d),0)))/2); A299152(n) = denominator(A299151perA299152(n)); \\ Antti Karttunen, Jul 29 2018
Extensions
More terms from Antti Karttunen, Jul 29 2018
A299119 Positive solution to 2^(n-1) = (1/n) * Sum_{d|n} a(d) * a(n/d).
1, 2, 6, 14, 40, 84, 224, 484, 1134, 2480, 5632, 12036, 26624, 56896, 122640, 261078, 557056, 1176876, 2490368, 5237360, 11008704, 23057408, 48234496, 100635144, 209714400, 436154368, 905962860, 1878931264, 3892314112, 8052800160, 16642998272, 34359209436
Offset: 1
Keywords
Comments
For prime p, a(p) = 2^(p-2)*p. - Jon E. Schoenfield, Feb 03 2018
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=1, 1, n*2^(n-2)- add(a(d)*a(n/d), d=divisors(n) minus {1, n})/2) end: seq(a(n), n=1..35); # Alois P. Heinz, Mar 07 2018
-
Mathematica
nn=50; sys=Table[2^(n-1)*n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}]; Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]
A257100 From fourth root of the inverse of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fourth power is 1/zeta; sequence gives numerator of b(n).
1, -1, -1, -3, -1, 1, -1, -7, -3, 1, -1, 3, -1, 1, 1, -77, -1, 3, -1, 3, 1, 1, -1, 7, -3, 1, -7, 3, -1, -1, -1, -231, 1, 1, 1, 9, -1, 1, 1, 7, -1, -1, -1, 3, 3, 1, -1, 77, -3, 3, 1, 3, -1, 7, 1, 7, 1, 1, -1, -3, -1, 1, 3, -1463, 1, -1, -1, 3, 1, -1, -1, 21, -1, 1, 3, 3, 1, -1, -1, 77, -77, 1, -1, -3, 1, 1, 1, 7, -1, -3, 1, 3, 1, 1, 1, 231, -1, 3, 3, 9
Offset: 1
Comments
Dirichlet g.f. of b(n) = a(n)/A256691(n) is (zeta(x))^(-1/4).
Denominator is the same as for Dirichlet g.f. (zeta(x))^(+1/4).
Formula holds for general Dirichlet g.f. zeta(x)^(-1/k) with k = 1, 2, ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..500 from Wolfgang Hintze)
Crossrefs
Programs
-
Mathematica
k = 4; c[1, n_] = b[n]; c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ] nn = 100; eqs = Table[c[k, n]==MoebiusMu[n], {n, 1, nn}]; sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals]; t = Table[b[n], {n, 1, nn}] /. sol[[1]]; num = Numerator[t] (* A257100 *) den = Denominator[t] (* A256691 *)
-
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(-1/4))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025
Formula
with k = 4;
zeta(x)^(-1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = mu(n) for b(m);
a(n) = numerator(b(n)).
Sum_{j=1..n} A257100(j)/A256691(j) ~ n / (Gamma(-1/4) * log(n)^(5/4)) * (1 + 5*(gamma/4 + 1)/(4*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 05 2025
A257101 From fifth root of the inverse of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fifth power is 1/zeta; sequence gives numerator of b(n).
1, -1, -1, -2, -1, 1, -1, -6, -2, 1, -1, 2, -1, 1, 1, -21, -1, 2, -1, 2, 1, 1, -1, 6, -2, 1, -6, 2, -1, -1, -1, -399, 1, 1, 1, 4, -1, 1, 1, 6, -1, -1, -1, 2, 2, 1, -1, 21, -2, 2, 1, 2, -1, 6, 1, 6, 1, 1, -1, -2, -1, 1, 2, -1596, 1, -1, -1, 2, 1, -1, -1, 12, -1, 1, 2, 2, 1, -1, -1, 21, -21, 1, -1, -2, 1, 1, 1, 6, -1, -2, 1, 2, 1, 1, 1, 399, -1, 2, 2, 4
Offset: 1
Comments
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..500 from Wolfgang Hintze)
- Vaclav Kotesovec, Graph - the asymptotic ratio (10000 terms)
Crossrefs
Programs
-
Mathematica
k = 5; c[1, n_] = b[n]; c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ] nn = 100; eqs = Table[c[k, n]==MoebiusMu[n], {n, 1, nn}]; sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals]; t = Table[b[n], {n, 1, nn}] /. sol[[1]]; num = Numerator[t] (* A257101 *) den = Denominator[t] (* A256693 *)
-
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(-1/5))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025
Formula
with k = 5;
zeta(x)^(-1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = mu(n) for b(m);
a(n) = numerator(b(n)).
Sum_{j=1..n} A257101(j)/A256693(j) ~ n / (Gamma(-1/5) * log(n)^(6/5)) * (1 + 6*(gamma/5 + 1)/(5*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 05 2025
A317939 Numerators of sequence whose Dirichlet convolution with itself yields A080339 = A010051 (characteristic function of primes) + A063524 (1, 0, 0, 0, ...).
1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 3, 1, -1, -1, -5, 1, 3, 1, 3, -1, -1, 1, -5, -1, -1, 1, 3, 1, 3, 1, 7, -1, -1, -1, -15, 1, -1, -1, -5, 1, 3, 1, 3, 3, -1, 1, 35, -1, 3, -1, 3, 1, -5, -1, -5, -1, -1, 1, -15, 1, -1, 3, -21, -1, 3, 1, 3, -1, 3, 1, 35, 1, -1, 3, 3, -1, 3, 1, 35, -5, -1, 1, -15, -1, -1, -1, -5, 1, -15, -1, 3, -1, -1, -1, -63, 1, 3, 3
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
up_to = 65537; DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v317939aux = DirSqrt(vector(up_to, n, if(1==n,1,isprime(n)))); A317939(n) = numerator(v317939aux[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A010051(n) - Sum_{d|n, d>1, d 1.
Comments
Links
Crossrefs
Programs
Mathematica
PARI
PARI
PARI
Scheme
Formula