cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A289618 a(n) = A289617(n) - A046645(n) = A005187(A001222(n)) - A046645(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 2, 1, 1, 0, 2, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 1, 1, 1, 2, 0, 2, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jul 08 2017

Keywords

Crossrefs

Cf. A268375 (positions of zeros), A289619 (of ones).

Programs

Formula

a(n) = A289617(n) - A046645(n) = A005187(A001222(n)) - A046645(n).

A305439 a(n) = A046645(n) - A007949(n); the 2-adic valuation of A317932.

Original entry on oeis.org

0, 1, 0, 3, 1, 1, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 4, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 8, 1, 2, 2, 4, 1, 2, 1, 5, 1, 2, 1, 4, 2, 2, 1, 7, 3, 4, 1, 4, 1, 2, 2, 5, 1, 2, 1, 4, 1, 2, 2, 10, 2, 2, 1, 4, 1, 3, 1, 5, 1, 2, 3, 4, 2, 2, 1, 8, 3, 2, 1, 4, 2, 2, 1, 5, 1, 3, 2, 4, 1, 2, 2, 8, 1, 4, 2, 6, 1, 2, 1, 5, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2018

Keywords

Comments

Apart from a(1) and a(3), all other terms are positive.

Crossrefs

Programs

Formula

a(n) = A046645(n) - A007949(n).
a(n) = A007814(A317932(n)).

A318440 a(n) = A046645(n) - A007814(n); the 2-adic valuation of A299150.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 3, 1, 3, 1, 2, 2, 1, 1, 2, 3, 1, 4, 2, 1, 2, 1, 3, 2, 1, 2, 4, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 1, 4, 3, 3, 2, 2, 1, 4, 2, 2, 2, 1, 1, 3, 1, 1, 4, 4, 2, 2, 1, 2, 2, 2, 1, 4, 1, 1, 4, 2, 2, 2, 1, 4, 7, 1, 1, 3, 2, 1, 2, 2, 1, 4, 2, 2, 2, 1, 2, 4, 1, 3, 4, 4, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2018

Keywords

Comments

After two initial terms, all terms are positive.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (1 + Mod[p, 2])*e - DigitCount[e, 2, 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    A007814(n) = valuation(n,2);
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A046645(n) = vecsum(apply(e -> A005187(e),factor(n)[,2]));
    A318440(n) = A046645(n) - A007814(n);

Formula

a(n) = A046645(n) - A007814(n).
a(n) = A007814(A299150(n)).
Additive with a(p^e) = (1 + (p mod 2))*e - A000120(e). - Amiram Eldar, Apr 28 2023
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = -1 + Sum_{p prime} f(1/p) = 0.410258867603361890498..., where f(x) = -x + Sum_{k>=0} (2^(k+1)-1)*x^(2^k)/(1+x^(2^k)). - Amiram Eldar, Sep 30 2023

A318656 The 2-adic valuation of ratio A318649(n)/A318512(n); a(n) = 2*A007814(n) - A046645(n).

Original entry on oeis.org

0, 1, -1, 1, -1, 0, -1, 2, -3, 0, -1, 0, -1, 0, -2, 1, -1, -2, -1, 0, -2, 0, -1, 1, -3, 0, -4, 0, -1, -1, -1, 2, -2, 0, -2, -2, -1, 0, -2, 1, -1, -1, -1, 0, -4, 0, -1, 0, -3, -2, -2, 0, -1, -3, -2, 1, -2, 0, -1, -1, -1, 0, -4, 2, -2, -1, -1, 0, -2, -1, -1, -1, -1, 0, -4, 0, -2, -1, -1, 0, -7, 0, -1, -1, -2, 0, -2, 1, -1, -3, -2, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2018

Keywords

Comments

Also the 2-adic valuation of ratio A318681(n)/A299150(n) [which is equal to A318649(n)/A318512(n), but not represented in lowest terms], as well as the 2-adic valuation of A318680(n)/A299150(n) = A318511(n)/A318512(n).

Crossrefs

Cf. A318654 (positions of positive terms).

Programs

Formula

a(n) = A318655(n) - A318513(n).
a(n) = A007814(n) - A318440(n).
a(n) = 2*A007814(n) - A046645(n) = A007814(n^2) - A046645(n).

A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.

Original entry on oeis.org

1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1

Views

Author

Keywords

Comments

From Antti Karttunen, Aug 21 2018: (Start)
a(n) is the denominator of any rational-valued sequence f(n) which has been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d
Proof:
Proof is by induction. We assume as our induction hypothesis that the given multiplicative formula for A046644 (resp. additive formula for A046645) holds for all proper divisors d|n, dA046645(p) = 1. [Remark: for squares of primes, f(p^2) = (4*b(p^2) - 1)/8, thus a(p^2) = 8.]
First we note that A005187(x+y) <= A005187(x) + A005187(y), with equivalence attained only when A004198(x,y) = 0, that is, when x and y do not have any 1-bits in the shared positions. Let m = Sum_{e} A005187(e), with e ranging over the exponents in prime factorization of n.
For [case A] any n in A268388 it happens that only when d (and thus also n/d) are infinitary divisors of n will Sum_{e} A005187(e) [where e now ranges over the union of multisets of exponents in the prime factorizations of d and n/d] attain value m, which is the maximum possible for such sums computed for all divisor pairs d and n/d. For any n in A268388, A037445(n) = 2^k, k >= 2, thus A037445(n) - 2 = 2 mod 4 (excluding 1 and n from the count, thus -2). Thus, in the recursive formula above, the maximal denominator that occurs in the sum is 2^m which occurs k times, with k being an even number, but not a multiple of 4, thus the factor (1/2) in the front of the whole sum will ensure that the denominator of the whole expression is 2^m [which thus is equal to 2^A046645(n) = a(n)].
On the other hand [case B], for squares in A050376 (A082522, numbers of the form p^(2^k) with p prime and k>0), all the sums A005187(x)+A005187(y), where x+y = 2^k, 0 < x <= y < 2^k are less than A005187(2^k), thus it is the lonely "middle pair" f(p^(2^(k-1))) * f(p^(2^(k-1))) among all the pairs f(d)*f(n/d), 1 < d < n = p^(2^k) which yields the maximal denominator. Furthermore, as it occurs an odd number of times (only once), the common factor (1/2) for the whole sum will increase the exponent of 2 in denominator by one, which will be (2*A005187(2^(k-1))) + 1 = A005187(2^k) = A046645(p^(2^k)).
(End)
From Antti Karttunen, Aug 21 2018: (Start)
The following list gives a few such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n). Here ε stands for sequence A063524 (1, 0, 0, ...).
Numerators Dirichlet convolution of numerator(n)/a(n) yields
------- -----------
(End)
This sequence gives an upper bound for the denominators of any rational-valued sequence obtained as the "Dirichlet Square Root" of any integer-valued sequence. - Andrew Howroyd, Aug 23 2018

Crossrefs

See A046643 for more details. See also A046645, A317940.
Cf. A299150, A299152, A317832, A317926, A317932, A317934 (for denominator sequences of other similar constructions).

Programs

Formula

From Antti Karttunen, Jul 08 2017: (Start)
Multiplicative with a(p^n) = 2^A005187(n).
a(1) = 1; for n > 1, a(n) = A000079(A005187(A067029(n))) * a(A028234(n)).
a(n) = A000079(A046645(n)).
(End)
Sum_{j=1..n} A046643(j)/A046644(j) ~ n / sqrt(Pi*log(n)) * (1 + (1 - gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 04 2025

A046643 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives numerator of b_n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 5, 3, 1, 1, 3, 1, 1, 1, 35, 1, 3, 1, 3, 1, 1, 1, 5, 3, 1, 5, 3, 1, 1, 1, 63, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 35, 3, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 3, 1, 1, 3, 231, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 3, 3, 1, 1, 1, 35, 35, 1, 1, 3, 1, 1, 1, 5, 1, 3
Offset: 1

Author

N. J. A. Sloane, Dec 11 1999

Comments

b(n) = A046643(n)/A046644(n) is multiplicative with b(p^n) = (2n-1)!!/2^n/n!. Dirichlet g.f. of A046643(n)/A046644(n) is sqrt(zeta(x)). - Christian G. Bower, May 16 2005
That is, b(p^n) = A001147(n) / (A000079(n)*A000142(n)) = A010050(n)/A000290(A000165(n)) = (2n)!/((2^n*n!)^2). - Antti Karttunen, Jul 08 2017

Examples

			b_1, b_2, ... = 1, 1/2, 1/2, 3/8, 1/2, 1/4, 1/2, 5/16, 3/8, 1/4, 1/2, 3/16, ...
		

Programs

Formula

Sum_{b|d} b(d)b(n/d) = 1. Also b_{2^j} = A001790[ j ]/2^A005187[ j ].
From Antti Karttunen, Jul 08 2017: (Start)
Multiplicative with a(p^n) = A001790(n).
a(1) = 1; for n > 1, a(n) = A001790(A067029(n)) * a(A028234(n)).
(End)
Sum_{j=1..n} A046643(j)/A046644(j) ~ n / sqrt(Pi*log(n)) * (1 + (1 - gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 04 2025

A268375 Numbers k for which A001222(k) = A267116(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 59, 61, 63, 64, 67, 68, 71, 73, 75, 76, 79, 80, 81, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 112, 113, 116, 117, 121, 124, 125, 127, 128, 131, 137, 139, 144, 147, 148, 149, 151, 153
Offset: 1

Author

Antti Karttunen, Feb 03 2016

Keywords

Comments

Numbers k whose prime factorization k = p_1^e_1 * ... * p_m^e_m contains no pair of exponents e_i and e_j (i and j distinct) whose base-2 representations have at least one shared digit-position in which both exponents have a 1-bit.
Equivalently, numbers k such that the factors in the (unique) factorization of k into powers of squarefree numbers with distinct exponents that are powers of two, are prime powers. For example, this factorization of 90 is 10^1 * 3^2, so 90 is not included, as 10 is not prime; whereas this factorization of 320 is 5^1 * 2^2 * 2^4, so 320 is included as 5 and 2 are both prime. - Peter Munn, Jan 16 2020
A225546 maps the set of terms 1:1 onto A138302. - Peter Munn, Jan 26 2020
Equivalently, numbers k for which A064547(k) = A331591(k). - Amiram Eldar, Dec 23 2023

Examples

			12 = 2^2 * 3^1 is included in the sequence as the exponents 2 ("10" in binary) and 1 ("01" in binary) have no 1-bits in the same position, and 18 = 2^1 * 3^2 is included for the same reason.
On the other hand, 24 = 2^3 * 3^1 is NOT included in the sequence as the exponents 3 ("11" in binary) and 1 ("01" in binary) have 1-bit in the same position 0.
720 = 2^4 * 3^2 * 5^1 is included as the exponents 1, 2 and 4 ("001", "010" and "100" in binary) have no 1-bits in shared positions.
Likewise, 10! = 3628800 = 2^8 * 3^4 * 5^2 * 7^1 is included as the exponents 1, 2, 4 and 8 ("0001", "0010", "0100" and "1000" in binary) have no 1-bits in shared positions. And similarly for any term of A191555.
		

Crossrefs

Indices of zeros in A268374, also in A289618.
Cf. A091862 (characteristic function), A268376 (complement).
Cf. A000961, A054753, A191555 (subsequences).
Related to A138302 via A225546.
Cf. also A318363 (a permutation).

Programs

  • Mathematica
    {1}~Join~Select[Range@ 160, PrimeOmega@ # == BitOr @@ Map[Last, FactorInteger@ #] &] (* Michael De Vlieger, Feb 04 2016 *)

A289617 a(n) = A005187(A001222(n)).

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 4, 3, 3, 1, 4, 1, 3, 3, 7, 1, 4, 1, 4, 3, 3, 1, 7, 3, 3, 4, 4, 1, 4, 1, 8, 3, 3, 3, 7, 1, 3, 3, 7, 1, 4, 1, 4, 4, 3, 1, 8, 3, 4, 3, 4, 1, 7, 3, 7, 3, 3, 1, 7, 1, 3, 4, 10, 3, 4, 1, 4, 3, 4, 1, 8, 1, 3, 4, 4, 3, 4, 1, 8, 7, 3, 1, 7, 3, 3, 3, 7, 1, 7, 3, 4, 3, 3, 3, 10, 1, 4, 4, 7, 1, 4, 1, 7, 4, 3, 1, 8, 1, 4, 3, 8, 1, 4, 3, 4, 4, 3, 3, 8
Offset: 1

Author

Antti Karttunen, Jul 08 2017

Keywords

Crossrefs

Cf. A268375 (positions where coincides with A046645).

Programs

Formula

a(n) = A005187(A001222(n)).

A293447 Fully additive with a(p^e) = e * A000225(PrimePi(p)), where PrimePi(n) = A000720(n) and A000225(n) = (2^n)-1.

Original entry on oeis.org

0, 1, 3, 2, 7, 4, 15, 3, 6, 8, 31, 5, 63, 16, 10, 4, 127, 7, 255, 9, 18, 32, 511, 6, 14, 64, 9, 17, 1023, 11, 2047, 5, 34, 128, 22, 8, 4095, 256, 66, 10, 8191, 19, 16383, 33, 13, 512, 32767, 7, 30, 15, 130, 65, 65535, 10, 38, 18, 258, 1024, 131071, 12, 262143, 2048, 21, 6, 70, 35, 524287, 129, 514, 23, 1048575, 9, 2097151, 4096, 17, 257, 46, 67, 4194303, 11, 12
Offset: 1

Author

Antti Karttunen, Nov 09 2017

Keywords

Comments

Original, equal definition: totally additive with a(p^e) = e * A005187(2^(PrimePi(p)-1)), where PrimePi(n) = A000720(n).

Programs

Formula

Totally additive with a(p^e) = e * A005187(2^(PrimePi(p)-1)), where PrimePi(n) = A000720(n).
a(1) = 0, and for n > 1, a(n) = A005187(A087207(n)) + a(A003557(n)).
Other identities:
For all n >= 1, a(A293442(n)) = A046645(n).
For all n >= 2 and all k >= 0, a(n^k) = k*a(n).
For all n >= 1, a(n) >= A048675(n) >= A331740(n) >= A331591(n).

Extensions

Definition simplified by Antti Karttunen, Feb 05 2020

A317946 Additive with a(p^e) = A011371(e); the 2-adic valuation of A317934(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 2, 0, 0, 0, 1, 0
Offset: 1

Author

Antti Karttunen, Aug 24 2018

Keywords

Comments

Records are A005187, occurring at A000302 (powers of 4).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e - DigitCount[e, 2, 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 21 2024 *)
  • PARI
    A011371(n) = (n - hammingweight(n));
    A317934(n) = vecsum(apply(e -> A011371(e),factor(n)[,2]));

Formula

a(n) = A007814(A317934(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime, k>=1} 1/(p^(2^k) - 1) = 0.63710219855356676263... . - Amiram Eldar, Jan 21 2024
Showing 1-10 of 19 results. Next