cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A368402 Numbers k such that k and k+1 are both in A268375.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 11, 12, 16, 17, 18, 19, 27, 28, 31, 43, 44, 47, 48, 49, 52, 63, 67, 75, 79, 80, 97, 98, 112, 116, 124, 127, 147, 148, 162, 163, 171, 172, 175, 191, 192, 207, 211, 241, 242, 243, 244, 256, 268, 271, 283, 288, 292, 316, 324, 331, 332, 337, 367
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2023

Keywords

Comments

Analogous to A342028, as A268375 is analogous to A130091.
The Mersenne primes (A000668) are terms.

Crossrefs

Subsequence of A130091, A268375 and A342028.
Subsequences: A000668, A368403, A368404.

Programs

  • Mathematica
    f[e_] := Position[Reverse[IntegerDigits[e, 2]], 1] // Flatten; q[n_] := q[n] = UnsameQ @@ Flatten[f /@ FactorInteger[n][[;; , 2]]]; Select[Range[100], q[#] && q[#+1] &]
  • PARI
    isA268375(n) = {my(e = factor(n)[,2], b = 0); for(i=1, #e, b = bitor(b, e[i])); n == 1 || b == vecsum(e);}
    lista(kmax) = {my(is1 = 0, is2); for(k = 1, kmax, is2 = isA268375(k); if(is1 && is2, print1(k-1, ", ")); is1 = is2);}

A368403 Starts of runs of 3 consecutive integers in A268375.

Original entry on oeis.org

1, 2, 3, 7, 11, 16, 17, 18, 27, 43, 47, 48, 79, 97, 147, 162, 171, 191, 241, 242, 243, 331, 367, 387, 431, 507, 547, 603, 907, 1051, 1249, 1250, 1619, 1871, 2267, 2347, 2523, 2799, 3411, 3643, 3987, 4049, 4050, 4111, 4175, 4203, 4491, 4923, 5119, 5391, 5407, 6091
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2023

Keywords

Comments

Analogous to A342029, as A268375 is analogous to A130091.

Crossrefs

Subsequence of A130091, A268375, A342029 and A368402.
A368404 is a subsequence.

Programs

  • Mathematica
    f[e_] := Position[Reverse[IntegerDigits[e, 2]], 1] // Flatten; q[n_] := UnsameQ @@ Flatten[f /@ FactorInteger[n][[;; , 2]]]; q[0] = False; seq[kmax_] := Module[{m = 3, s = {}, v}, v = q /@ Range[0, m - 1]; Do[v = Join[Rest[v], {q[k]}]; If[And @@ v, AppendTo[s, k - m + 1]], {k, m, kmax}]; s]; seq[6000]
  • PARI
    isA268375(n) = {my(e = factor(n)[,2], b = 0); for(i=1, #e, b = bitor(b, e[i])); n == 1 || b == vecsum(e);}
    lista(kmax) = {my(tri = vector(3, i, isA268375(i)), k = 4); while(k < kmax, if(vecsum(tri) == 3, print1(k-3, ", ")); tri = concat(vecextract(tri, "^1"), isA268375(k)); k++); }

A368404 Starts of runs of 4 consecutive integers in A268375.

Original entry on oeis.org

1, 2, 16, 17, 47, 241, 242, 1249, 4049, 120049, 3693761, 14268481, 22997761, 28140001, 35296801, 83747681, 91801249, 256692481, 971435041, 1261928321, 1429948241, 1691176481, 1697230321, 2168901521, 3018800401, 4199128081, 5795553121, 7626372001, 7940268161, 11438281249
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2023

Keywords

Comments

Analogous to A342030, as A268375 is analogous to A130091.
1, 16 and 241 are the only starts of runs of 5 consecutive integers in A268375 below 10^10. Are there any other such runs?

Crossrefs

Subsequence of A130091, A268375, A342030, A368402 and A368403.

Programs

  • Mathematica
    f[e_] := Position[Reverse[IntegerDigits[e, 2]], 1] // Flatten; q[n_] := UnsameQ @@ Flatten[f /@ FactorInteger[n][[;; , 2]]]; q[0] = False; seq[kmax_] := Module[{m = 4, s = {}, v}, v = q /@ Range[0, m - 1]; Do[v = Join[Rest[v], {q[k]}]; If[And @@ v, AppendTo[s, k - m + 1]], {k, m, kmax}]; s]; seq[5000]
  • PARI
    isA268375(n) = {my(e = factor(n)[,2], b = 0); for(i=1, #e, b = bitor(b, e[i])); n == 1 || b == vecsum(e);}
    lista(kmax) = {my(quad = vector(4, i, isA268375(i)), k = 5); while(k < kmax, if(vecsum(quad) == 4, print1(k-4, ", ")); quad = concat(vecextract(quad, "^1"), isA268375(k)); k++);}

A138302 Exponentially 2^n-numbers: 1 together with positive integers k such that all exponents in prime factorization of k are powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Views

Author

Vladimir Shevelev, May 07 2008

Keywords

Comments

Previous name: sequence consists of products of distinct relatively prime terms of A084400. - Vladimir Shevelev, Sep 24 2015
These numbers are also called "compact integers."
The density of this sequence exists and equals 0.872497...
There exist only seven compact factorials A000142(n) for n=1,2,3,6,7,10 and 11.
For a general definition of exponentially S-numbers, see comments in A209061. - Vladimir Shevelev, Sep 24 2015
The first 1000 digits of the density of the sequence were calculated by Juan Arias-de-Reyna in A271727. - Vladimir Shevelev, Apr 18 2016
A225546 maps the set of terms 1:1 onto A268375. - Peter Munn, Jan 26 2020
Numbers whose sets of unitary divisors (A077610) and infinitary divisors (A077609) coincide. - Amiram Eldar, Dec 23 2020

Examples

			60 = 2^(2^1)*3^(2^0)*5^(2^0).
		

Crossrefs

Programs

  • Maple
    isA000079 := proc(n)
        if n = 1 then
            true;
        else
            type(n,'even') and nops(numtheory[factorset](n))=1 ;
            simplify(%) ;
        end if;
    end proc:
    isA138302 := proc(n)
        local p;
        if n = 1 then
            return true;
        end if;
        for p in ifactors(n)[2] do
            if not isA000079(op(2,p)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    for n from 1 to 100 do
        if isA138302(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Sep 27 2016
  • Mathematica
    lst={}; Do[p=Prime[n]; s=p^(1/3); f=Floor[s]; a=f^3; d=p-a; AppendTo[lst,d], {n,100}]; Union[lst] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
    selQ[n_] := AllTrue[FactorInteger[n][[All, 2]], IntegerQ[Log[2, #]]&];
    Select[Range[100], selQ] (* Jean-François Alcover, Oct 29 2018 *)
  • PARI
    is(n)=if(n<8, n>0, vecmin(apply(n->n>>valuation(n,2)==1, factor(n)[,2]))) \\ Charles R Greathouse IV, Dec 07 2012

Formula

Identities arising from the calculation of the density h of the sequence (cf. [Shevelev] and comment for a generalization in A209061):
h = Product_{prime p} Sum_{j in {0 and 2^k}}(p-1)/p^(j+1) = Product_{prime p} (1 + Sum_{j>=2} (u(j) - u(j-1))/p^j) = (1/zeta(2))* Product_{p}(1 + 1/(p+1))*Sum_{i>=1}p^(-(2^i-1)), where u(n) is the characteristic function of set {2^k, k>=0}. - Vladimir Shevelev, Sep 24 2015

Extensions

Incorrect comment removed by Charles R Greathouse IV, Dec 07 2012
Simpler name from Vladimir Shevelev, Sep 24 2015
Edited by N. J. A. Sloane, Nov 07 2015

A267116 Bitwise-OR of the exponents of primes in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 3, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 3, 3, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Examples

			For n = 4 = 2^2, bitwise-OR of 2 alone is 2, thus a(4) = 2.
For n = 6 = 2^1 * 3^1, when we take a bitwise-or of 1 and 1, we get 1, thus a(6) = 1.
For n = 24 = 2^3 * 3^1, bitwise-or of 3 and 1 ("11" and "01" in binary) gives "11", thus a(24) = 3.
For n = 210 = 2^1 * 3^1 * 5^1 * 7^1, bitwise-or of 1, 1, 1 and 1 gives 1, thus a(210) = 1.
For n = 720 = 2^4 * 3^2 * 5^1, bitwise-or of 4, 2 and 1 ("100", "10" and "1" in binary) gives 7 ("111" in binary), thus a(720) = 7.
		

Crossrefs

Cf. A000290 (indices of even numbers).
Cf. A000037 (indices of odd numbers).
Nonunit terms of A005117, A062503, A113849 give the positions of ones, twos, fours respectively in this sequence.
Sequences with similar definitions: A260728, A267113, A267115 (bitwise-AND) and A268387 (bitwise-XOR of exponents).
Sequences with related analysis: A267114, A268374, A268375, A268376.
Sequences A088529, A136565 and A181591 coincide with a(n) for n: 2 <= n < 24.
A003961, A059896 are used to express relationship between terms of this sequence.
Related to A087207 via A225546.

Programs

  • Maple
    read("transforms"):
    A267116 := proc(n)
        local a,e ;
        a := 0 ;
        for e in ifactors(n)[2] do
            a := ORnos(a,op(2,e)) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Feb 16 2021
  • Mathematica
    {0}~Join~Rest@ Array[BitOr @@ Map[Last, FactorInteger@ #] &, 120] (* Michael De Vlieger, Feb 04 2016 *)
  • PARI
    a(n)=my(f = factor(n)); my(b = 0); for (k=1, #f~, b = bitor(b, f[k,2]);); b; \\ Michel Marcus, Feb 05 2016
    
  • PARI
    a(n)=if(n>1, fold(bitor, factor(n)[,2]), 0) \\ Charles R Greathouse IV, Aug 04 2016
    
  • Python
    from functools import reduce
    from operator import or_
    from sympy import factorint
    def A267116(n): return reduce(or_,factorint(n).values(),0) # Chai Wah Wu, Aug 31 2022

Formula

a(1) = 0; for n > 1: a(n) = A067029(n) OR a(A028234(n)). [Here OR stands for bitwise-or, A003986.]
Other identities and observations. For all n >= 1:
a(n) = A007814(n) OR A260728(n) OR A267113(n).
a(n) = A001222(n) - A268374(n).
A268387(n) <= a(n) <= A001222(n).
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k).
a(A003961(n)) = a(n).
a(n^2) = 2*a(n).
a(n) = A087207(A225546(n)).
a(A225546(n)) = A087207(n).
(End)

A046645 a(n) = log_2(A046644(n)); also the 2-adic valuation of A046644(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 7, 1, 4, 1, 4, 2, 2, 1, 5, 3, 2, 4, 4, 1, 3, 1, 8, 2, 2, 2, 6, 1, 2, 2, 5, 1, 3, 1, 4, 4, 2, 1, 8, 3, 4, 2, 4, 1, 5, 2, 5, 2, 2, 1, 5, 1, 2, 4, 10, 2, 3, 1, 4, 2, 3, 1, 7, 1, 2, 4, 4, 2, 3, 1, 8, 7, 2, 1, 5, 2, 2, 2, 5, 1, 5, 2, 4, 2
Offset: 1

Views

Author

Keywords

Comments

A268375 gives numbers n for which a(n) = A289617(n) = A005187(A001222(n)). - Antti Karttunen, Jul 08 2017

Crossrefs

Programs

Formula

a(n) = A007814(A046644(n)). - Michel Marcus, Apr 16 2015
Additive with a(p^n) = A005187(n). - Antti Karttunen, Jul 08 2017
a(n) = A293447(A293442(n)). - Antti Karttunen, Nov 10 2017
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 1.410258867603361890498..., where f(x) = -x + Sum_{k>=0} (2^(k+1)-1)*x^(2^k)/(1+x^(2^k)). - Amiram Eldar, Sep 29 2023

A191555 a(n) = Product_{k=1..n} prime(k)^(2^(n-k)).

Original entry on oeis.org

1, 2, 12, 720, 3628800, 144850083840000, 272760108249915378892800000000, 1264767303092594444142256488682840323816161280000000000000000
Offset: 0

Views

Author

Rick L. Shepherd, Jun 06 2011

Keywords

Comments

x^(2^n) - a(n) is the minimal polynomial over Q for the algebraic number sqrt(p(1)*sqrt(p(2)*...*sqrt(p(n-1)*sqrt(p(n)))...)), where p(k) is the k-th prime. Each such monic polynomial is irreducible by Eisenstein's Criterion (using p = p(n)).
A prime version of Somos's quadratic recurrence sequence A052129(n) = A052129(n-1)^2 * n = Product_{k=1..n} k^(2^(n-k)). - Jonathan Sondow, Mar 29 2014
All positive integers have unique factorizations into powers of distinct primes, and into powers of squarefree numbers with distinct exponents that are powers of 2. (See A329332 for a description of the relationship between the two.) a(n) is the least number such that both factorizations have n factors. - Peter Munn, Dec 15 2019
From Peter Munn, Jan 24 2020 to Feb 06 2020: (Start)
For n >= 0, a(n+1) is the n-th power of 12 in the monoid defined by A306697.
a(n) is the least positive integer that cannot be expressed as the product of fewer than n terms of A072774 (powers of squarefree numbers).
All terms that are less than the order of the Monster simple group (A003131) are divisors of the group's order, with a(6) exceeding its square root.
(End)
It is remarkable that 4 of the first 5 terms are factorials. - Hal M. Switkay, Jan 21 2025

Examples

			a(1) = 2^1 = 2 and x^2 - 2 is the minimal polynomial for the algebraic number sqrt(2).
a(4) = 2^8*3^4*5^2*7^1 = 3628800 and x^16 - 3628800 is the minimal polynomial for the algebraic number sqrt(2*sqrt(3*sqrt(5*sqrt(7)))).
		

Crossrefs

Sequences with related definitions: A006939, A052129, A191554, A239350 (and thence A239349), A252738, A266639.
A000290, A003961, A059896, A306697 are used to express relationship between terms of this sequence.
Subsequence of A025487, A138302, A225547, A267117 (apart from a(1) = 2), A268375, A331593.
Antidiagonal products of A329050.

Programs

  • Magma
    [n le 1 select 2 else Self(n-1)^2*NthPrime(n): n in [1..10]]; // Vincenzo Librandi, Feb 06 2016
  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1)^2*ithprime(n))
        end:
    seq(a(n), n=0..8);  # Alois P. Heinz, Mar 05 2020
  • Mathematica
    RecurrenceTable[{a[1] == 2, a[n] == a[n-1]^2 Prime[n]}, a, {n, 10}] (* Vincenzo Librandi, Feb 06 2016 *)
    Table[Product[Prime[k]^2^(n-k),{k,n}],{n,0,10}] (* or *) nxt[{n_,a_}]:={n+1,a^2 Prime[n+1]}; NestList[nxt,{0,1},10][[All,2]] (* Harvey P. Dale, Jan 07 2022 *)
  • PARI
    a(n) = prod(k=1, n, prime(k)^(2^(n-k)))
    
  • Scheme
    ;; Two variants, both with memoization-macro definec.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000040 n) (A000290 (A191555 (- n 1)))))) ;; After the original recurrence.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000079 (A000079 (- n 1))) (A003961 (A191555 (- n 1)))))) ;; After the alternative recurrence - Antti Karttunen, Feb 06 2016
    

Formula

For n > 0, a(n) = a(n-1)^2 * prime(n); a(0) = 1. [edited to extend to a(0) by Peter Munn, Feb 13 2020]
a(0) = 1; for n > 0, a(n) = 2^(2^(n-1)) * A003961(a(n-1)). - Antti Karttunen, Feb 06 2016, edited Feb 13 2020 because of the new prepended starting term.
For n > 1, a(n) = A306697(a(n-1),12) = A059896(a(n-1)^2, A003961(a(n-1))). - Peter Munn, Jan 24 2020

Extensions

a(0) added by Peter Munn, Feb 13 2020

A352780 Square array A(n,k), n >= 1, k >= 0, read by descending antidiagonals, such that the row product is n and column k contains only (2^k)-th powers of squarefree numbers.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Apr 02 2022

Keywords

Comments

This is well-defined because positive integers have a unique factorization into powers of nonunit squarefree numbers with distinct exponents that are powers of 2.
Each (infinite) row is the lexicographically earliest with product n and terms that are a (2^k)-th power for all k.
For all k, column k is column k+1 of A060176 conjugated by A225546.

Examples

			The top left corner of the array:
  n/k |   0   1   2   3   4   5   6
------+------------------------------
    1 |   1,  1,  1,  1,  1,  1,  1,
    2 |   2,  1,  1,  1,  1,  1,  1,
    3 |   3,  1,  1,  1,  1,  1,  1,
    4 |   1,  4,  1,  1,  1,  1,  1,
    5 |   5,  1,  1,  1,  1,  1,  1,
    6 |   6,  1,  1,  1,  1,  1,  1,
    7 |   7,  1,  1,  1,  1,  1,  1,
    8 |   2,  4,  1,  1,  1,  1,  1,
    9 |   1,  9,  1,  1,  1,  1,  1,
   10 |  10,  1,  1,  1,  1,  1,  1,
   11 |  11,  1,  1,  1,  1,  1,  1,
   12 |   3,  4,  1,  1,  1,  1,  1,
   13 |  13,  1,  1,  1,  1,  1,  1,
   14 |  14,  1,  1,  1,  1,  1,  1,
   15 |  15,  1,  1,  1,  1,  1,  1,
   16 |   1,  1, 16,  1,  1,  1,  1,
   17 |  17,  1,  1,  1,  1,  1,  1,
   18 |   2,  9,  1,  1,  1,  1,  1,
   19 |  19,  1,  1,  1,  1,  1,  1,
   20 |   5,  4,  1,  1,  1,  1,  1,
		

Crossrefs

Sequences used in a formula defining this sequence: A000188, A007913, A060176, A225546.
Cf. A007913 (column 0), A335324 (column 1).
Range of values: {1} U A340682 (whole table), A005117 (column 0), A062503 (column 1), {1} U A113849 (column 2).
Row numbers of rows:
- with a 1 in column 0: A000290\{0};
- with a 1 in column 1: A252895;
- with a 1 in column 0, but not in column 1: A030140;
- where every 1 is followed by another 1: A337533;
- with 1's in all even columns: A366243;
- with 1's in all odd columns: A366242;
- where every term has an even number of distinct prime factors: A268390;
- where every term is a power of a prime: A268375;
- where the terms are pairwise coprime: A138302;
- where the last nonunit term is coprime to the earlier terms: A369938;
- where the last nonunit term is a power of 2: A335738.
Number of nonunit terms in row n is A331591(n); their positions are given (in reversed binary) by A267116(n); the first nonunit is in column A352080(n)-1 and the infinite run of 1's starts in column A299090(n).

Programs

  • PARI
    up_to = 105;
    A352780sq(n, k) = if(k==0, core(n), A352780sq(core(n, 1)[2], k-1)^2);
    A352780list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, forstep(col=a-1,0,-1, i++; if(i > up_to, return(v)); v[i] = A352780sq(a-col,col))); (v); };
    v352780 = A352780list(up_to);
    A352780(n) = v352780[n];

Formula

A(n,0) = A007913(n); for k > 0, A(n,k) = A(A000188(n), k-1)^2.
A(n,k) = A225546(A060176(A225546(n), k+1)).
A331591(A(n,k)) <= 1.

A268376 Numbers n for which A001222(n) > A267116(n).

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 24, 26, 30, 33, 34, 35, 36, 38, 39, 40, 42, 46, 51, 54, 55, 56, 57, 58, 60, 62, 65, 66, 69, 70, 72, 74, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 100, 102, 104, 105, 106, 108, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126, 129, 130, 132, 133, 134, 135, 136, 138, 140, 141
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Comments

Numbers n such that in their prime factorization n = p_1^e_1 * ... * p_k^e_k, there is at least one pair of exponents e_i and e_j (i and j distinct), such that their base-2 representations have at least one shared digit-position in which both exponents have 1-bit.

Examples

			n = 6 = 2^1 * 3^1 is included as both exponents, 1 and 1 ("1" in binary) have both 1-bit in position 0 of their binary representations.
n = 24 = 2^3 * 3^1 is included as both exponents, 1 and 3 ("01" and "11" in binary) have both 1-bit in position 0 of their binary representations.
n = 36 = 2^2 * 3^2 is included as both exponents, 2 and 2 ("10" in binary) have both 1-bit in position 1 of their binary representations.
n = 60 = 2^2 * 3^1 * 5^1 is included as the exponents of 3 and 5, both of which are 1, have both 1-bit in position 1 of their binary representations.
		

Crossrefs

Indices of nonzeros in A268374.
Subsequence of A002808 and A024619.
Cf. A268375 (complement).
Cf. A260730 (subsequence).
Cf. also A267117.
Differs from A067582(n+1) for the first time at n=25, where a(n) = 60, a value which is missing from A067582.

Programs

  • Mathematica
    Select[Range@ 144, PrimeOmega@ # > BitOr @@ Map[Last, FactorInteger@ #] &] (* Michael De Vlieger, Feb 04 2016 *)

A289617 a(n) = A005187(A001222(n)).

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 4, 3, 3, 1, 4, 1, 3, 3, 7, 1, 4, 1, 4, 3, 3, 1, 7, 3, 3, 4, 4, 1, 4, 1, 8, 3, 3, 3, 7, 1, 3, 3, 7, 1, 4, 1, 4, 4, 3, 1, 8, 3, 4, 3, 4, 1, 7, 3, 7, 3, 3, 1, 7, 1, 3, 4, 10, 3, 4, 1, 4, 3, 4, 1, 8, 1, 3, 4, 4, 3, 4, 1, 8, 7, 3, 1, 7, 3, 3, 3, 7, 1, 7, 3, 4, 3, 3, 3, 10, 1, 4, 4, 7, 1, 4, 1, 7, 4, 3, 1, 8, 1, 4, 3, 8, 1, 4, 3, 4, 4, 3, 3, 8
Offset: 1

Views

Author

Antti Karttunen, Jul 08 2017

Keywords

Crossrefs

Cf. A268375 (positions where coincides with A046645).

Programs

Formula

a(n) = A005187(A001222(n)).
Showing 1-10 of 15 results. Next