cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Juan Arias-de-Reyna

Juan Arias-de-Reyna's wiki page.

Juan Arias-de-Reyna has authored 23 sequences. Here are the ten most recent ones:

A288163 Integers related to the half moments of Rvachëv function.

Original entry on oeis.org

1, 1, 5, 84, 4004, 494760, 150120600, 107969547840, 179605731622464, 678695382464158080, 5745964983105758544000, 107798142804281290451059200, 4441362930723337358985334172160, 398854836980938754158182857661404160, 77576833096847783279235708819073596288000
Offset: 0

Author

Juan Arias-de-Reyna, Jun 06 2017

Keywords

Comments

These numbers determine the half moments of the Rvachëv function. The Rvachëv function is related to the Fabius function, up(x)=F(x+1) for |x|<1 and up(x)=0 for |x|>=1.

Crossrefs

Programs

  • Mathematica
    d[0] = 1;
    d[n_] := d[n] =
      Sum[Binomial[n + 1, k] d[k], {k, 0, n - 1}]/((n + 1)*(2^n - 1));
    a[n_] := (n + 1)! Product[(2^k - 1), {k, 1, n}] d[n];
    Table[a[n], {n, 0, 14}]

Formula

a(n) = (n+1)!*Product_{k=1..n}(2^k-1)*d(n) where d(n) are the rationals defined by the recurrence d(0)=1; d(n)=Sum_{k=0..n-1}[binomial(n+1,k)d(k)]/((n+1)*(2^n-1)) (cf. A288161).

A287938 Integers associated with moments of Rvachëv function.

Original entry on oeis.org

1, 1, 19, 2915, 2788989, 14754820185, 402830065455939, 54259734183964303995, 34931036957548128175343565, 104968042559556881090071537121985, 1445701512369903326110289606343988638195, 89942525814858602265845303890518923811304544595, 24979493321562411847493262443987087581059026281953954525
Offset: 0

Author

Juan Arias-de-Reyna, Jun 03 2017

Keywords

Comments

a(n) is equal to the product of (2*n+1)!!*(Product_{k=1..n} (2^(2*k)-1)) and A287936(n)/A287937(n), the moment of the Rvachëv function. The Rvachëv function is related to the Fabius function; up(x)=F(x+1) for |x|<1 and up(x)=0 for |x|>=1, where F is the Fabius function.

Crossrefs

Programs

  • Mathematica
    c[0] = 1;
    c[n_] := c[n] =
       Sum[Binomial[2 n + 1, 2 k] c[k], {k, 0, n - 1}]/((2 n + 1) (2^(2 n) - 1));
    a[n_] := a[n] = c[n] (2 n + 1)!! Product[(2^(2 k) - 1), {k, 1, n}];
    Table[a[n], {n, 0, 30}]
    Table[(-1)^n 4^(-n) (2 n)! (2 n + 1)!! Sum[QBinomial[n, k, 1/4] 2^(-k (3 k + 1)/2)/(2 n + k + 1)! Sum[(-1)^ThueMorse[m] (2 m + 1)^(2 n + k + 1), {m, 0, 2^k - 1}], {k, 0, n}], {n, 0, 12}] (* Vladimir Reshetnikov, Jul 08 2018 *)

Formula

a(n) = (2*n+1)!!*(Product_{k=1..n} (2^(2*k)-1))*A287936(n)/A287937(n).

A287936 Numerator of moments of Rvachëv function up(x).

Original entry on oeis.org

1, 1, 19, 583, 132809, 46840699, 4068990560161, 1204567303451311, 4146897304424408411, 18814360006695807527868793, 21431473463327429953796293981397, 911368783375270623395381542054690099, 3805483535214088799368825731508632105336401423
Offset: 0

Author

Juan Arias-de-Reyna, Jun 03 2017

Keywords

Comments

a(n)/A287937(n) is equal to the integral of t^(2n) * up(t), the moment of the Rvachëv function. The Rvachëv function is related to the Fabius function; up(x)=F(x+1) for |x|<1 and up(x)=0 for |x|>=1, where F is the Fabius function.

Crossrefs

Programs

  • Mathematica
    c[0] = 1;
    c[n_] := c[n] =
       Sum[Binomial[2 n + 1, 2 k] c[k], {k, 0, n - 1}]/((2 n + 1) (2^(2 n) - 1));
    Table[Numerator[c[n]], {n, 0, 30}]

Formula

Recurrence c(0)=1, c(n)=Sum_{k=0..n-1}(binomial(2n+1,2k) c_k)/((2n+1)*(2^(2n)-1)), where c(n)=a(n)/A287937(n).

A288161 Denominator of half moments of Rvachëv function.

Original entry on oeis.org

2, 18, 6, 1350, 270, 23814, 17010, 65063250, 7229250, 9762090030, 4437313650, 8267713725521250, 635977978886250, 81188783595533250, 297692206516955250, 22510683177794610356250, 1564913803803903393750, 40011216302189267004656036250, 10529267447944543948593693750
Offset: 1

Author

Juan Arias-de-Reyna, Jun 06 2017

Keywords

Comments

a(n) is equal to the denominator of the integral over (0,1) of n*t^(n-1)*up(t).
These numbers are the half moments of the Rvachëv function. The Rvachëv function is related to the Fabius function, up(x)=F(x+1) for |x|<1 and up(x)=0 for |x|>=1.
The sequence of numerators is not in the OEIS because it appears t coincide with A272755: Numerators of Fabius function F(1/2^n). In fact d(n) = n! 2^binomial(n,2)F(1/2^n). The coincidence depends on the fact that n! 2^binomial(n,2) divides the denominator of F(1/2^n). It is true that 2^binomial(n,2) divides this denominator, but I do not see any reason for n! to divide this denominator.

Examples

			The rationals d(n) are  1/2, 5/18, 1/6, 143/1350, 19/270,  ...
		

Crossrefs

Programs

  • Mathematica
    d[0] = 1;
    d[n_] := d[n] =
      Sum[Binomial[n + 1, k] d[k], {k, 0, n - 1}]/((n + 1)*(2^n - 1));
    Table[Denominator[d[n]], {n, 1, 20}]

Formula

Recurrence d(0)=1; d(n)=Sum_{k=0..n-1}(binomial(n+1,k)d(k))/((n+1)*(2^n-1)) with a(n) are the denominators of d(n).
It may also be defined to be the only sequence d(n) with d(0)=1 and such that the function f(x)=Sum_{n>=0} d(n) x^n/n! satisfies x*f(2x)=(e^x-1)*f(x).

A287937 Denominator of moments of Rvachëv function up(x).

Original entry on oeis.org

1, 9, 675, 59535, 32531625, 24405225075, 4133856862760625, 2232691548877164375, 13301767332333178846875, 100028040755473167511640090625, 182171989134769427819794434994453125, 12012265189685856975048179723754213046875, 75749878923357625026812035792140968086378130859375
Offset: 0

Author

Juan Arias-de-Reyna, Jun 03 2017

Keywords

Examples

			A287936(n)/a(n) = 1/1, 1/9, 19/675, 583/59535, ...
		

Crossrefs

Programs

  • Mathematica
    c[0] = 1;
    c[n_] := c[n] =
       Sum[Binomial[2 n + 1, 2 k] c[k], {k, 0, n - 1}]/((2 n + 1) (2^(2 n) - 1));
    Table[Denominator[c[n]], {n, 0, 30}]

Formula

Recurrence c(0)=1, c(n)=Sum_{k=0..n-1}(binomial(2n+1,2k) c_k)/((2n+1)*(2^(2n)-1)), where c(n)=A287936(n)/a(n).

A281391 Vinogradov's number J_{3,2}(n).

Original entry on oeis.org

1, 20, 93, 256, 563, 1032, 1771, 2744, 4077, 5788, 7985, 10560, 13855, 17600, 22047, 27304, 33425, 40140, 47989, 56504, 66315, 77296, 89411, 102336, 117061, 132956, 150201, 168904, 189479, 211080, 235111, 260240, 287385, 316420, 347237
Offset: 1

Author

Juan Arias-de-Reyna, Jan 21 2017

Keywords

Comments

a(n) is the number of solutions of the system of equations x_1 + x_2 + x_3 = y_1 + y_2 + y_3, x_1^2 + x_2^2 + x_3^2 = y_1^2 + y_2^2 + y_3^2 and such that 1 <= x_1, x_2, x_3, y_1, y_2, y_3 <= n.
Vinogradov's numbers J_{s,k}(X) play an important role in many number-theoretic problems, for example Waring's problem and bounds on the zeta function.
There is an asymptotic formula: the first term is due to Rogovskaya, the second to Blomer and Brüdern.

Examples

			The system of equations have trivial solutions in which {y_1,y_2,y_3} is a permutation of {x_1,x_2,x_3}. The first nontrivial solutions are in the case J_{3,2}(5), where there are 18 solutions from permutations of {x_1,x_2,x_3} = {1,4,4}, {y_1,y_2,y_3} = {2,2,5}.
		

References

  • Rogovskaya, N. N., An asymptotic formula for the number of solutions of a system of equations, Diophantine Approximations, Part II, Moskov, Gos. Univ., Moscow, 1986, pp. 78-84.

Programs

  • Mathematica
    J32[X_] := Module[{T, n, count, P, S, PS, long, K, L, m},
       T = Table[n, {n, 1, X}];
       count = 0;
       P = Tuples[T, 3];
       For[S = 3, S <= 3 X, S++,
        PS[S] = Select[P, Total[#] == S &]];
       For[S = 3, S <= 3 X, S++,
        long = Length[PS[S]];
        For[n = 1, n <= long, n++,
         K = PS[S][[n]];
         For[m = 1, m <= long, m++,
          L = PS[S][[m]];
          If[Total[K^2] == Total[L^2], count = count + 1]]];
        ];
       count];
    Table[J32[n], {n, 1, 12}]
    (* or *)
    a[n_] := Sum[Block[{p,w,e}, p = IntegerPartitions[s, {3}, Range@ n]; w = Length /@ Permutations /@ p; e = (Plus @@ Last /@ #) & /@ GatherBy[ Transpose@ {Plus @@@ (p^2), w}, First]; Total[e^2]], {s, 3, 3 n}]; Array[a, 50] (* faster, Giovanni Resta, Mar 12 2017 *)

Formula

a(n) ~ (18/Pi^2)(n^3*log n) + (3/Pi^2)*(12*C - 6zeta'(2)/zeta(2) - 5)*n^3 + O(n^(5/2)log n), where C is Euler's constant.

A271727 Decimal expansion of the density of exponentially 2^n-numbers (A138302).

Original entry on oeis.org

8, 7, 2, 4, 9, 7, 1, 7, 9, 3, 5, 3, 9, 1, 2, 8, 1, 3, 5, 5, 8, 0, 0, 7, 7, 1, 4, 3, 3, 2, 5, 3, 1, 8, 6, 6, 9, 1, 9, 5, 8, 3, 9, 3, 9, 7, 7, 7, 3, 3, 3, 7, 3, 7, 6, 5, 4, 1, 2, 4, 2, 2, 6, 2, 1, 3, 1, 1, 2, 7, 8, 3, 5, 9, 0, 3, 9, 8, 1, 4, 2, 9, 7, 9, 2, 2, 1, 7, 8, 4, 4, 1, 6, 5, 9, 9, 1, 5
Offset: 0

Author

Juan Arias-de-Reyna, Apr 13 2016

Keywords

Examples

			0.87249717935391281355800771433253186691958393977733373765412...
		

Crossrefs

Density of A138302.
Cf. A271726 (Expansion of log(f(x))).

Programs

  • Mathematica
    $MaxExtraPrecision = m = 500; em = 10; f[x_] := Log[1 - x^3 + Sum[x^(2^e) - x^(1 + 2^e), {e, 2, em}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]] (* Amiram Eldar, Sep 09 2022 *)

Formula

Equals Product_{prime p} f(1/p), where f(x) = 1-x^3+Sum_{n>=2}(x^(2^n)-x^(1+2^n)).

A271726 Let f(x) = 1 -x^3+ Sum_{j>=2} (x^(2^j)-x^(1+2^j)). Then a(n) is n times the coefficient of x^n in the expansion of log(f(x)).

Original entry on oeis.org

0, 0, -3, 4, -5, -3, 7, -4, -3, 5, -11, 1, 13, -21, 7, 28, -51, 33, 19, -91, 109, -33, -115, 209, -155, -65, 321, -381, 87, 407, -713, 476, 349, -1207, 1227, -35, -1739, 2603, -1277, -1979, 4797, -4161, -903, 7451, -9713, 3427, 9165, -18575, 14021, 6455, -29991, 34779
Offset: 1

Author

Juan Arias-de-Reyna, Apr 13 2016

Keywords

Comments

Function f(x) is connected with the density h of exponentially (2^n)-numbers (A138302). Specifically, for h = Product_{prime p} f(1/p), this sequence allows the calculation of h with very high accuracy (cf. A271727).

Programs

  • Mathematica
    M = 6; K = 50; (* To get the first  50 terms *)
    f = 1 - x^3 + Sum[x^(2^r) - x^(2^r + 1), {r, 2, M}];
    S = Series[Log[f], {x, 0, K}];
    If[2^M <= K, Print["Warning: 2^M should be greater than K and it is not. Change parameters."]];
    L = CoefficientList[S, x];
    A271726[n_] := n L[[n + 1]];
    Table[A271726[n], {n, 1, K}]

A262400 Let f(x) = 1 + Sum_{j>=4} (|mu(j)| - |mu(j-1)|)*x^j, where mu(n) is the Möbius function (A008683). Then a(n) is n times the coefficient of x^n in the expansion of log(f(x)).

Original entry on oeis.org

0, 0, 0, 0, -4, 5, 0, 0, -12, 9, 5, 0, -28, 39, 0, -10, -60, 102, -45, 0, -119, 252, -132, 0, -252, 580, -403, 9, -424, 1363, -1210, 248, -828, 3003, -3332, 1195, -1729, 6697, -8740, 4290, -3807, 14514, -22176, 13889, -9288, 31049, -54142, 41501, -25260, 66885, -129570
Offset: 0

Author

Juan Arias-de-Reyna, Sep 21 2015

Keywords

Comments

Function f(x) is connected with the density h of the exponentially squarefree numbers (A209061). Specifically, for h = Product_{prime p} f(1/p), this sequence allows the calculation of h with very high accuracy (cf. A262276).

Crossrefs

Programs

  • Mathematica
    M = 50; (* to get the first 51 terms *)
    f = 1 + Sum[(MoebiusMu[n]^2 - MoebiusMu[n - 1]^2) x^n, {n, 4, M}];
    S = Series[Log[f], {x, 0, M}];
    A262400[nn_] := CoefficientList[S, x][[nn + 1]] nn;
    Table[A262400[n], {n, 0, M}]

A262276 Decimal expansion of Toth's constant (the density of the exponentially squarefree numbers).

Original entry on oeis.org

9, 5, 5, 9, 2, 3, 0, 1, 5, 8, 6, 1, 9, 0, 2, 3, 7, 6, 8, 8, 4, 0, 6, 5, 3, 8, 6, 7, 0, 9, 8, 7, 0, 0, 7, 4, 6, 7, 7, 1, 5, 9, 4, 3, 1, 6, 5, 4, 5, 6, 8, 6, 8, 8, 3, 2, 8, 0, 5, 8, 9, 4, 9, 0, 1, 8, 1, 7, 2, 8, 7, 0, 1, 5, 5, 2, 2, 9, 2, 5, 7, 1, 0, 3, 5, 7, 2, 0, 0, 5, 5, 9, 1, 1, 6, 4, 4, 0, 3, 5, 2, 3, 0, 1, 2, 9, 3, 3, 4, 7, 1, 7, 1, 5, 8, 0, 1, 2, 2, 4, 3, 6, 3, 9, 8, 9, 3, 3, 8, 8, 1, 2, 0, 3, 8, 6, 6, 0, 1, 3, 2, 8, 6, 3, 2, 6, 7, 5, 2, 0, 6, 6, 3, 5, 8, 0, 2, 7, 1, 7, 9, 6, 0
Offset: 0

Author

Juan Arias-de-Reyna, Sep 19 2015

Keywords

Examples

			0.95592301586190237688406538670987007467715943165456868832805...
		

Crossrefs

Density of A209061.
Cf. A008683.

Programs

  • Mathematica
    $MaxExtraPrecision = m = 1000; f[x_] := Log[1 - x^4 + (1 - x)*Sum[x^e*(MoebiusMu[e]^2), {e, 4, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 163][[1]] (* Amiram Eldar, Apr 27 2025 *)

Formula

Equals Product_{prime p} (1+Sum_{j>=4} (mu(j)^2 - mu(j-1)^2)/p^j), where mu(n) is the Möbius function.