cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A272757 Denominators of the Fabius function F(1/2^n).

Original entry on oeis.org

1, 2, 72, 288, 2073600, 33177600, 561842749440, 179789679820800, 704200217922109440000, 180275255788060016640000, 1246394851358539387238350848000, 6381541638955721662660356341760000, 292214732887898713986916575925267070976000000
Offset: 0

Views

Author

Vladimir Reshetnikov, May 05 2016

Keywords

Comments

The Fabius function F(x) is the smooth monotone increasing function on [0, 1] satisfying F(0) = 0, F(1) = 1, F'(x) = 2*F(2*x) for 0 < x < 1/2, F'(x) = 2*F(2*(1-x)) for 1/2 < x < 1. It is infinitely differentiable at every point in the interval, but is nowhere analytic. It assumes rational values at dyadic rationals.
From Juan Arias-de-Reyna, Jun 08 2017: (Start)
It is true that n! divides a(n) for all n? This is true for the first 200 terms.
If this is true A272755, the sequence of numerators of F(2^(-n)) is also the sequence of numerators of the half moments of Rvachëv function. (Cf. A288161). (End)

Examples

			A272755/A272757 = 1/1, 1/2, 5/72, 1/288, 143/2073600, 19/33177600, 1153/561842749440, 583/179789679820800, ...
		

References

  • Rvachev V. L., Rvachev V. A., Non-classical methods of the approximation theory in boundary value problems, Naukova Dumka, Kiev (1979) (in Russian), pages 117-125.

Crossrefs

Cf. A272755 (numerators), A272343.

Programs

  • Mathematica
    c[0] = 1; c[n_] := c[n] = Sum[(-1)^k c[n - k]/(2 k + 1)!, {k, 1, n}] / (4^n - 1); Denominator@Table[Sum[c[k] (-1)^k / (n - 2 k)!, {k, 0, n/2}] / 2^((n + 1) n/2), {n, 0, 15}] (* Vladimir Reshetnikov, Oct 16 2016 *)

Formula

Recurrence: d(0) = 1, d(n) = (1/(n+1)! + Sum_{k=1..n-1} (2^(k*(k-1)/2)/(n-k+1)!)*d(k))/((2^n-1)*2^(n*(n-1)/2)), where d(n) = A272755(n)/A272757(n). - Vladimir Reshetnikov, Feb 27 2017

A288163 Integers related to the half moments of Rvachëv function.

Original entry on oeis.org

1, 1, 5, 84, 4004, 494760, 150120600, 107969547840, 179605731622464, 678695382464158080, 5745964983105758544000, 107798142804281290451059200, 4441362930723337358985334172160, 398854836980938754158182857661404160, 77576833096847783279235708819073596288000
Offset: 0

Views

Author

Juan Arias-de-Reyna, Jun 06 2017

Keywords

Comments

These numbers determine the half moments of the Rvachëv function. The Rvachëv function is related to the Fabius function, up(x)=F(x+1) for |x|<1 and up(x)=0 for |x|>=1.

Crossrefs

Programs

  • Mathematica
    d[0] = 1;
    d[n_] := d[n] =
      Sum[Binomial[n + 1, k] d[k], {k, 0, n - 1}]/((n + 1)*(2^n - 1));
    a[n_] := (n + 1)! Product[(2^k - 1), {k, 1, n}] d[n];
    Table[a[n], {n, 0, 14}]

Formula

a(n) = (n+1)!*Product_{k=1..n}(2^k-1)*d(n) where d(n) are the rationals defined by the recurrence d(0)=1; d(n)=Sum_{k=0..n-1}[binomial(n+1,k)d(k)]/((n+1)*(2^n-1)) (cf. A288161).
Showing 1-2 of 2 results.