A272755
Numerators of the Fabius function F(1/2^n).
Original entry on oeis.org
1, 1, 5, 1, 143, 19, 1153, 583, 1616353, 132809, 134926369, 46840699, 67545496213157, 4068990560161, 411124285571171, 1204567303451311, 73419800947733963069, 4146897304424408411, 86773346866163284480799923, 18814360006695807527868793, 539741515875650532056045666422369
Offset: 0
A272755/A272757 = 1/1, 1/2, 5/72, 1/288, 143/2073600, 19/33177600, 1153/561842749440, 583/179789679820800, ...
- Rvachev V. L., Rvachev V. A., Non-classical methods of the approximation theory in boundary value problems, Naukova Dumka, Kiev (1979) (in Russian), pages 117-125.
- Juan Arias de Reyna, An infinitely differentiable function with compact support: Definition and properties, arXiv:1702.05442 [math.CA], 2017.
- Juan Arias de Reyna, On the arithmetic of Fabius function, arXiv:1702.06487 [math.NT], 2017.
- Yuri Dimitrov, G. A. Edgar, Solutions of Self-differential Functional Equations
- G. A. Edgar, Examples of self differential functions
- J. Fabius, A probabilistic example of a nowhere analytic C^infty-function, Probability Theory and Related Fields, June 1966, Volume 5, Issue 2, pp 173-174.
- Jan Kristian Haugland, Evaluating the Fabius function, arXiv:1609.07999 [math.GM], 23 Sep 2016.
- Wikipedia, Fabius function
-
c[0] = 1; c[n_] := c[n] = Sum[(-1)^k c[n - k]/(2 k + 1)!, {k, 1, n}] / (4^n - 1); Numerator@Table[Sum[c[k] (-1)^k / (n - 2 k)!, {k, 0, n/2}] / 2^((n + 1) n/2), {n, 0, 15}] (* Vladimir Reshetnikov, Oct 16 2016 *)
A287938
Integers associated with moments of Rvachëv function.
Original entry on oeis.org
1, 1, 19, 2915, 2788989, 14754820185, 402830065455939, 54259734183964303995, 34931036957548128175343565, 104968042559556881090071537121985, 1445701512369903326110289606343988638195, 89942525814858602265845303890518923811304544595, 24979493321562411847493262443987087581059026281953954525
Offset: 0
-
c[0] = 1;
c[n_] := c[n] =
Sum[Binomial[2 n + 1, 2 k] c[k], {k, 0, n - 1}]/((2 n + 1) (2^(2 n) - 1));
a[n_] := a[n] = c[n] (2 n + 1)!! Product[(2^(2 k) - 1), {k, 1, n}];
Table[a[n], {n, 0, 30}]
Table[(-1)^n 4^(-n) (2 n)! (2 n + 1)!! Sum[QBinomial[n, k, 1/4] 2^(-k (3 k + 1)/2)/(2 n + k + 1)! Sum[(-1)^ThueMorse[m] (2 m + 1)^(2 n + k + 1), {m, 0, 2^k - 1}], {k, 0, n}], {n, 0, 12}] (* Vladimir Reshetnikov, Jul 08 2018 *)
A277429
Numerators of the Fabius function F(3/2^n).
Original entry on oeis.org
67, 73, 46657, 25219, 29407171, 10997359, 109661317247, 31733679209, 558462830097043, 132566737763827, 646476041042787542443, 130499244418507180561, 2411172049639892707896547, 424191560077453917728503, 84883189962706557116984038531, 172244289373664036915914887721
Offset: 2
A277429/A277430 = 67/72, 73/288, 46657/2073600, 25219/33177600, 29407171/2809213747200, ... (starting from n = 2)
- Rvachev V. L., Rvachev V. A., Non-classical methods of the approximation theory in boundary value problems, Naukova Dumka, Kiev (1979) (in Russian), pages 117-125.
- Yuri Dimitrov, G. A. Edgar, Solutions of Self-differential Functional Equations
- G. A. Edgar, Examples of self differential functions
- J. Fabius, A probabilistic example of a nowhere analytic C^infty-function, Probability Theory and Related Fields, June 1966, Volume 5, Issue 2, pp 173-174.
- Wikipedia, Fabius function
-
c[0] = 1;
c[k_] := c[k] = Sum[((-1)^(k - r) c[r])/(1 + 2 k - 2 r)!, {r, 0, k - 1}]/(4^k - 1);
t[n_] := Mod[2 n + Sum[(-1)^Binomial[n, k], {k, 1, n}], 3];
f[x_] := Module[{k = Numerator[x], n = Log2[Denominator[x]]}, Sum[((-1)^(q + t[p - 1]) 2^(-(n - 1) n/2) (1/2 - p + k)^(n - 2 q) c[q])/(4^q (n - 2 q)!), {p, 1, k}, {q, 0, n/2}]];
Table[Numerator[f[3/2^n]], {n, 2, 20}]
A277430
Denominators of the Fabius function F(3/2^n).
Original entry on oeis.org
72, 288, 2073600, 33177600, 2809213747200, 179789679820800, 704200217922109440000, 180275255788060016640000, 6231974256792696936191754240000, 6381541638955721662660356341760000, 292214732887898713986916575925267070976000000, 1196911545908833132490410294989893922717696000000
Offset: 2
A277429/A277430 = 67/72, 73/288, 46657/2073600, 25219/33177600, 29407171/2809213747200, ... (starting from n = 2)
- Rvachev V. L., Rvachev V. A., Non-classical methods of the approximation theory in boundary value problems, Naukova Dumka, Kiev (1979) (in Russian), pages 117-125.
- Yuri Dimitrov, G. A. Edgar, Solutions of Self-differential Functional Equations
- G. A. Edgar, Examples of self differential functions
- J. Fabius, A probabilistic example of a nowhere analytic C^infty-function, Probability Theory and Related Fields, June 1966, Volume 5, Issue 2, pp 173-174.
- Wikipedia, Fabius function
-
c[0] = 1;
c[k_] := c[k] = Sum[((-1)^(k - r) c[r])/(1 + 2 k - 2 r)!, {r, 0, k - 1}]/(4^k - 1);
t[n_] := Mod[2 n + Sum[(-1)^Binomial[n, k], {k, 1, n}], 3];
f[x_] := Module[{k = Numerator[x], n = Log2[Denominator[x]]}, Sum[((-1)^(q + t[p - 1]) 2^(-(n - 1) n/2) (1/2 - p + k)^(n - 2 q) c[q])/(4^q (n - 2 q)!), {p, 1, k}, {q, 0, n/2}]];
Table[Denominator[f[3/2^n]], {n, 2, 20}]
A277471
Normalized values of the Fabius function: 2^binomial(n-1, 2) * (2*n)! * A005329(n) * F(1/2^n).
Original entry on oeis.org
2, 1, 5, 105, 7007, 1298745, 619247475, 723733375365, 2006532782969715, 12889909959143502285, 188494585656727188486375, 6188497678605937441851529425, 451101946262511157576785806552415, 72341127537387548941434093006996374625, 25326487488712595887856341442148826764706875
Offset: 0
- Rvachev V. L., Rvachev V. A., Non-classical methods of the approximation theory in boundary value problems, Naukova Dumka, Kiev (1979) (in Russian), pages 117-125.
- Juan Arias de Reyna, An infinitely differentiable function with compact support: Definition and properties, arXiv:1702.05442 [math.CA], 2017.
- Juan Arias de Reyna, On the arithmetic of Fabius function, arXiv:1702.06487 [math.NT], 2017.
- Yuri Dimitrov, G. A. Edgar, Solutions of Self-differential Functional Equations
- G. A. Edgar, Examples of self differential functions
- J. Fabius, A probabilistic example of a nowhere analytic C^infty-function, Probability Theory and Related Fields, June 1966, Volume 5, Issue 2, pp. 173-174.
- Jan Kristian Haugland, Evaluating the Fabius function, arXiv:1609.07999 [math.GM], 23 Sep 2016.
- Wikipedia, Fabius function
-
c[0] = 1; c[n_] := c[n] = Sum[(-1)^k c[n - k]/(2 k + 1)!, {k, 1, n}] / (4^n - 1); Table[2^(1 - 2 n) (2 n)! QFactorial[n, 2] Sum[c[k] (-1)^k/(n - 2 k)!, {k, 0, n/2}], {n, 0, 15}]
Showing 1-5 of 5 results.
Comments