A287936
Numerator of moments of Rvachëv function up(x).
Original entry on oeis.org
1, 1, 19, 583, 132809, 46840699, 4068990560161, 1204567303451311, 4146897304424408411, 18814360006695807527868793, 21431473463327429953796293981397, 911368783375270623395381542054690099, 3805483535214088799368825731508632105336401423
Offset: 0
-
c[0] = 1;
c[n_] := c[n] =
Sum[Binomial[2 n + 1, 2 k] c[k], {k, 0, n - 1}]/((2 n + 1) (2^(2 n) - 1));
Table[Numerator[c[n]], {n, 0, 30}]
A287938
Integers associated with moments of Rvachëv function.
Original entry on oeis.org
1, 1, 19, 2915, 2788989, 14754820185, 402830065455939, 54259734183964303995, 34931036957548128175343565, 104968042559556881090071537121985, 1445701512369903326110289606343988638195, 89942525814858602265845303890518923811304544595, 24979493321562411847493262443987087581059026281953954525
Offset: 0
-
c[0] = 1;
c[n_] := c[n] =
Sum[Binomial[2 n + 1, 2 k] c[k], {k, 0, n - 1}]/((2 n + 1) (2^(2 n) - 1));
a[n_] := a[n] = c[n] (2 n + 1)!! Product[(2^(2 k) - 1), {k, 1, n}];
Table[a[n], {n, 0, 30}]
Table[(-1)^n 4^(-n) (2 n)! (2 n + 1)!! Sum[QBinomial[n, k, 1/4] 2^(-k (3 k + 1)/2)/(2 n + k + 1)! Sum[(-1)^ThueMorse[m] (2 m + 1)^(2 n + k + 1), {m, 0, 2^k - 1}], {k, 0, n}], {n, 0, 12}] (* Vladimir Reshetnikov, Jul 08 2018 *)
A288161
Denominator of half moments of Rvachëv function.
Original entry on oeis.org
2, 18, 6, 1350, 270, 23814, 17010, 65063250, 7229250, 9762090030, 4437313650, 8267713725521250, 635977978886250, 81188783595533250, 297692206516955250, 22510683177794610356250, 1564913803803903393750, 40011216302189267004656036250, 10529267447944543948593693750
Offset: 1
The rationals d(n) are 1/2, 5/18, 1/6, 143/1350, 19/270, ...
-
d[0] = 1;
d[n_] := d[n] =
Sum[Binomial[n + 1, k] d[k], {k, 0, n - 1}]/((n + 1)*(2^n - 1));
Table[Denominator[d[n]], {n, 1, 20}]
A288163
Integers related to the half moments of Rvachëv function.
Original entry on oeis.org
1, 1, 5, 84, 4004, 494760, 150120600, 107969547840, 179605731622464, 678695382464158080, 5745964983105758544000, 107798142804281290451059200, 4441362930723337358985334172160, 398854836980938754158182857661404160, 77576833096847783279235708819073596288000
Offset: 0
-
d[0] = 1;
d[n_] := d[n] =
Sum[Binomial[n + 1, k] d[k], {k, 0, n - 1}]/((n + 1)*(2^n - 1));
a[n_] := (n + 1)! Product[(2^k - 1), {k, 1, n}] d[n];
Table[a[n], {n, 0, 14}]
Showing 1-4 of 4 results.
Comments