A266639 a(n) = A252738(n) / A191555(n).
1, 1, 3, 675, 58604765625, 11092415260481715750835418701171875, 3137960908072825781252850621957535487873360037739990444983085932462881828541867434978485107421875
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2)^2 * prime(3) = 3^2 * 5 = 45. a(A002110(n)) = A002110(n + 1) / 2.
a003961 1 = 1 a003961 n = product $ map (a000040 . (+ 1) . a049084) $ a027746_row n -- Reinhard Zumkeller, Apr 09 2012, Oct 09 2011 (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library) (require 'factor) (define (A003961 n) (apply * (map A000040 (map 1+ (map A049084 (factor n)))))) ;; Antti Karttunen, May 20 2014
a:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]): seq(a(n), n=1..80); # Alois P. Heinz, Sep 13 2017
a[p_?PrimeQ] := a[p] = Prime[ PrimePi[p] + 1]; a[1] = 1; a[n_] := a[n] = Times @@ (a[#1]^#2& @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Dec 01 2011, updated Sep 20 2019 *) Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1], {n, 65}] (* Michael De Vlieger, Mar 24 2017 *)
a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],nextprime(1+f[k,1])^f[k,2]))
a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Michel Marcus, May 17 2014
use ntheory ":all"; sub a003961 { vecprod(map { next_prime($) } factor(shift)); } # _Dana Jacobsen, Mar 06 2016
from sympy import factorint, prime, primepi, prod def a(n): f=factorint(n) return 1 if n==1 else prod(prime(primepi(i) + 1)**f[i] for i in f) [a(n) for n in range(1, 11)] # Indranil Ghosh, May 13 2017
The top left 5 X 5 corner of the array: n\k | 0 1 2 3 4 ----+------------------------------------------------------- 0 | 2, 4, 16, 256, 65536, ... 1 | 3, 9, 81, 6561, 43046721, ... 2 | 5, 25, 625, 390625, 152587890625, ... 3 | 7, 49, 2401, 5764801, 33232930569601, ... 4 | 11, 121, 14641, 214358881, 45949729863572161, ... Column 0 continues as a list of primes, column 1 as a list of their squares, column 2 as a list of their 4th powers, and so on. Every nonnegative power of 2 (A000079) is a product of a unique subset of numbers from row 0; every squarefree number (A005117) is a product of a unique subset of numbers from column 0. Likewise other rows and columns generate the sets of numbers from sequences: Row 1: A000244 Powers of 3. Column 1: A062503 Squares of squarefree numbers. Row 2: A000351 Powers of 5. Column 2: A113849 4th powers of squarefree numbers. Union of rows 0 and 1: A003586 3-smooth numbers. Union of columns 0 and 1: A046100 Biquadratefree numbers. Union of row 0 / column 0: A122132 Oddly squarefree numbers. Row 0 excluding column 0: A000302 Powers of 4. Column 0 excluding row 0: A056911 Squarefree odd numbers. All rows except 0: A005408 Odd numbers. All columns except 0: A000290\{0} Positive squares. All rows except 1: A001651 Numbers not divisible by 3. All columns except 1: A252895 (have odd number of square divisors). If, instead of restrictions on choosing individual factors of the product, we restrict the product to be of an even number of terms from each row of the array, we get A262675. The equivalent restriction applied to columns gives us A268390; applied only to column 0, we get A028260 (product of an even number of primes).
Table[Prime[#]^(2^k) &[m - k + 1], {m, 0, 7}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Dec 28 2019 *)
up_to = 105; A329050sq(n,k) = (prime(1+n)^(2^k)); A329050list(up_to) = { my(v = vector(up_to), i=0); for(a=0, oo, for(col=0, a, i++; if(i > up_to, return(v)); v[i] = A329050sq(col, a-col))); (v); }; v329050 = A329050list(up_to); A329050(n) = v329050[1+n]; for(n=0,up_to-1,print1(A329050(n),", ")); \\ Antti Karttunen, Nov 06 2019
From _Michael De Vlieger_, Jul 21 2023: (Start) a(0) = 1 = product of {1}, a(1) = 2^1 = product of {2}, a(2) = 2^2 * 3^1 = product of {3, 2^2}, a(3) = 2^4 * 3^3 * 5^1 = product of {5, 2^1*3^1, 3^2, 2^3}, a(4) = 2^8 * 3^7 * 5^4 * 7^1 = product of {7, 2^1*5^1, 3^1*5^1, 2^2*3^1, 5^2, 2^1*3^2, 3^3, 2^4}, ... Table of e(n,k) where a(n) = Product_{k=1..n+1} prime(k)^e(n,k): prime(k)| 2 3 5 7 11 13 17 19 23 29 31 ... n\k | 1 2 3 4 5 6 7 8 9 10 11 ... ---------------------------------------------------- 0 | 1 1 | 2 1 2 | 4 3 1 3 | 8 7 4 1 4 | 16 15 11 5 1 5 | 32 31 26 16 6 1 6 | 64 63 57 42 22 7 1 7 | 128 127 120 99 64 29 8 1 8 | 256 255 247 219 163 93 37 9 1 9 | 512 511 502 466 382 256 130 46 10 1 10 | 1024 1023 1013 968 848 638 386 176 56 11 1 ... (End)
Table[Times @@ Array[Prime[# + 1]^Sum[Binomial[n, # + j], {j, 0, n}] &, n + 1, 0], {n, 0, 5}] (* Michael De Vlieger, Jul 21 2023 *)
allocatemem(234567890); A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus A252738print(up_to_n) = { my(s, i=0, n=0); for(n=0, up_to_n, if(0 == n, s = 1, if(1 == n, s = 2; lev = vector(1); lev[1] = 2, oldlev = lev; lev = vector(2*length(oldlev)); s = 1; for(i = 0, (2^(n-1))-1, lev[i+1] = if((i%2),A003961(oldlev[(i\2)+1]),2*oldlev[(i\2)+1]); s *= lev[i+1]))); write("b252738.txt", n, " ", s)); }; \\ Counts them empirically. A252738print(7);
(definec (A252738rec n) (if (<= n 1) (+ 1 n) (* (A000079 (A000079 (- n 2))) (A252738rec (- n 1)) (A003961 (A252738rec (- n 1)))))) ;; Implements the given recurrence; uses the memoizing definec-macro. (define (A252738 n) (if (zero? n) 1 (mul A163511 (A000079 (- n 1)) (A000225 n)))) (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i))))))) ;; Another alternative, implementing the new recurrence: (definec (A252738 n) (if (<= n 1) (+ 1 n) (* (A267096 (- n 2)) (A000290 (A252738 (- n 1)))))) ;; Antti Karttunen, Feb 06 2016
12 = 2^2 * 3^1 is included in the sequence as the exponents 2 ("10" in binary) and 1 ("01" in binary) have no 1-bits in the same position, and 18 = 2^1 * 3^2 is included for the same reason. On the other hand, 24 = 2^3 * 3^1 is NOT included in the sequence as the exponents 3 ("11" in binary) and 1 ("01" in binary) have 1-bit in the same position 0. 720 = 2^4 * 3^2 * 5^1 is included as the exponents 1, 2 and 4 ("001", "010" and "100" in binary) have no 1-bits in shared positions. Likewise, 10! = 3628800 = 2^8 * 3^4 * 5^2 * 7^1 is included as the exponents 1, 2, 4 and 8 ("0001", "0010", "0100" and "1000" in binary) have no 1-bits in shared positions. And similarly for any term of A191555.
{1}~Join~Select[Range@ 160, PrimeOmega@ # == BitOr @@ Map[Last, FactorInteger@ #] &] (* Michael De Vlieger, Feb 04 2016 *)
The Fermi-Dirac factorization of 160 is 2 * 5 * 16. The factors 2, 5 and 16 are A329050(0,0), A329050(2,0) and A329050(0,2), having symmetry about the main diagonal of A329050. So 160 is in the sequence.
A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n)); ff(fa) = {for (i=1, #fa~, my(p=fa[i, 1]); fa[i, 1] = A019565(fa[i, 2]); fa[i, 2] = 2^(primepi(p)-1); ); fa; } \\ A225546 pos(k, fs) = for (i=1, #fs, if (fs[i] == k, return(i));); normalize(f) = {my(list = List()); for (k=1, #f~, my(fk = factor(f[k,1])); for (j=1, #fk~, listput(list, fk[j,1]));); my(fs = Set(list)); my(m = matrix(#fs, 2)); for (i=1, #m~, m[i,1] = fs[i]; for (k=1, #f~, m[i,2] += valuation(f[k,1], fs[i])*f[k,2];);); m;} isok(n) = my(fa=factor(n), fb=ff(fa)); normalize(fb) == fa; \\ Michel Marcus, Aug 05 2022
The factorization of 6 into powers of distinct primes is 6 = 2^1 * 3^1 = 2 * 3, which has 2 terms. Its factorization into powers of squarefree numbers with distinct exponents that are powers of 2 is 6 = 6^(2^0) = 6^1, which has 1 term. So a(6) is min(2,1) = 1. The factorization of 40 into powers of distinct primes is 40 = 2^3 * 5^1 = 8 * 5, which has 2 terms. Its factorization into powers of squarefree numbers with distinct exponents that are powers of 2 is 40 = 10^(2^0) * 2^(2^1) = 10^1 * 2^2 = 10 * 4, which has 2 terms. So a(40) is min(2,2) = 2.
4 is square and not 1, so 4 is not in the sequence. 12 = 3 * 2^2 is nonsquare, and has square part 4, whose square root (2) is in the sequence. So 12 is in the sequence. 32 = 2 * 4^2 is nonsquare, but has square part 16, whose square root (4) is not in the sequence. So 32 is not in the sequence.
S:= {1}: for n from 2 to 100 do if not issqr(n) then F:= ifactors(n)[2]; s:= mul(t[1]^floor(t[2]/2),t=F); if member(s,S) then S:= S union {n} fi fi od: sort(convert(S,list)); # Robert Israel, Jan 07 2025
pow2Q[n_] := n == 2^IntegerExponent[n, 2]; Select[Range[100], # == 1 || pow2Q[1 + BitOr @@ (FactorInteger[#][[;; , 2]])] &] (* Amiram Eldar, Sep 18 2020 *)
60 = 2^2 * 3^1 * 5^1 is included, as bitwise-anding together the binary representations of the exponents, "10", "01" and "01" results "00", zero.
{1}~Join~Select[Range@ 300, BitAnd @@ Map[Last, FactorInteger@ #] == 0 &] (* Michael De Vlieger, Feb 07 2016 *)
a(1) = 2^1 = 2 and x^2 - 2 is the minimal polynomial for the algebraic number sqrt(2). a(4) = 2^1*3^2*5^4*7^8 = 64854011250 and x^16 - 64854011250 is the minimal polynomial for the algebraic number sqrt(7*sqrt(5*sqrt(3*sqrt(2)))).
a(n) = prod(k=1, n, prime(k)^(2^(k-1)))
Comments