cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A191555 a(n) = Product_{k=1..n} prime(k)^(2^(n-k)).

Original entry on oeis.org

1, 2, 12, 720, 3628800, 144850083840000, 272760108249915378892800000000, 1264767303092594444142256488682840323816161280000000000000000
Offset: 0

Views

Author

Rick L. Shepherd, Jun 06 2011

Keywords

Comments

x^(2^n) - a(n) is the minimal polynomial over Q for the algebraic number sqrt(p(1)*sqrt(p(2)*...*sqrt(p(n-1)*sqrt(p(n)))...)), where p(k) is the k-th prime. Each such monic polynomial is irreducible by Eisenstein's Criterion (using p = p(n)).
A prime version of Somos's quadratic recurrence sequence A052129(n) = A052129(n-1)^2 * n = Product_{k=1..n} k^(2^(n-k)). - Jonathan Sondow, Mar 29 2014
All positive integers have unique factorizations into powers of distinct primes, and into powers of squarefree numbers with distinct exponents that are powers of 2. (See A329332 for a description of the relationship between the two.) a(n) is the least number such that both factorizations have n factors. - Peter Munn, Dec 15 2019
From Peter Munn, Jan 24 2020 to Feb 06 2020: (Start)
For n >= 0, a(n+1) is the n-th power of 12 in the monoid defined by A306697.
a(n) is the least positive integer that cannot be expressed as the product of fewer than n terms of A072774 (powers of squarefree numbers).
All terms that are less than the order of the Monster simple group (A003131) are divisors of the group's order, with a(6) exceeding its square root.
(End)
It is remarkable that 4 of the first 5 terms are factorials. - Hal M. Switkay, Jan 21 2025

Examples

			a(1) = 2^1 = 2 and x^2 - 2 is the minimal polynomial for the algebraic number sqrt(2).
a(4) = 2^8*3^4*5^2*7^1 = 3628800 and x^16 - 3628800 is the minimal polynomial for the algebraic number sqrt(2*sqrt(3*sqrt(5*sqrt(7)))).
		

Crossrefs

Sequences with related definitions: A006939, A052129, A191554, A239350 (and thence A239349), A252738, A266639.
A000290, A003961, A059896, A306697 are used to express relationship between terms of this sequence.
Subsequence of A025487, A138302, A225547, A267117 (apart from a(1) = 2), A268375, A331593.
Antidiagonal products of A329050.

Programs

  • Magma
    [n le 1 select 2 else Self(n-1)^2*NthPrime(n): n in [1..10]]; // Vincenzo Librandi, Feb 06 2016
  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1)^2*ithprime(n))
        end:
    seq(a(n), n=0..8);  # Alois P. Heinz, Mar 05 2020
  • Mathematica
    RecurrenceTable[{a[1] == 2, a[n] == a[n-1]^2 Prime[n]}, a, {n, 10}] (* Vincenzo Librandi, Feb 06 2016 *)
    Table[Product[Prime[k]^2^(n-k),{k,n}],{n,0,10}] (* or *) nxt[{n_,a_}]:={n+1,a^2 Prime[n+1]}; NestList[nxt,{0,1},10][[All,2]] (* Harvey P. Dale, Jan 07 2022 *)
  • PARI
    a(n) = prod(k=1, n, prime(k)^(2^(n-k)))
    
  • Scheme
    ;; Two variants, both with memoization-macro definec.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000040 n) (A000290 (A191555 (- n 1)))))) ;; After the original recurrence.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000079 (A000079 (- n 1))) (A003961 (A191555 (- n 1)))))) ;; After the alternative recurrence - Antti Karttunen, Feb 06 2016
    

Formula

For n > 0, a(n) = a(n-1)^2 * prime(n); a(0) = 1. [edited to extend to a(0) by Peter Munn, Feb 13 2020]
a(0) = 1; for n > 0, a(n) = 2^(2^(n-1)) * A003961(a(n-1)). - Antti Karttunen, Feb 06 2016, edited Feb 13 2020 because of the new prepended starting term.
For n > 1, a(n) = A306697(a(n-1),12) = A059896(a(n-1)^2, A003961(a(n-1))). - Peter Munn, Jan 24 2020

Extensions

a(0) added by Peter Munn, Feb 13 2020

A267115 Bitwise-AND of the exponents of primes in the prime factorization of n, a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 0, 1, 1, 1, 4, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 0, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 6, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 0, 4, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 13, 105, 826, 7440, 71558, 707625, 7053959, 70473172, 704531711, 7044701307, 70445097231, ... . Apparently, the asymptotic mean of this sequence is limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 0.7044... . - Amiram Eldar, Sep 09 2022

Examples

			For n = 24 = 2^3 * 3^1, bitwise-and of 3 and 1 ("11" and "01" in binary) gives 1, thus a(24) = 1.
For n = 210 = 2^1 * 3^1 * 5^1 * 7^1, bitwise-and of 1, 1, 1 and 1 gives 1, thus a(210) = 1.
For n = 720 = 2^4 * 3^2 * 5^1, bitwise-and of 4, 2 and 1 ("100", "10" and "1" in binary) gives zero, thus a(720) = 0.
		

Crossrefs

Cf. A002035 (indices of odd numbers), A072587 (indices of even numbers that occur after a(1)).
Cf. A267117 (indices of zeros).

Programs

  • Mathematica
    {0}~Join~Table[BitAnd @@ Map[Last, FactorInteger@ n], {n, 2, 120}] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    a(n)=my(f = factor(n)[,2]); if (#f == 0, return (0)); my(b = f[1]); for (k=2, #f, b = bitand(b, f[k]);); b; \\ Michel Marcus, Feb 07 2016
    
  • PARI
    a(n)=if(n>1, fold(bitand, factor(n)[,2]), 0) \\ Charles R Greathouse IV, Aug 04 2016
    
  • Python
    from functools import reduce
    from operator import and_
    from sympy import factorint
    def A267115(n): return reduce(and_,factorint(n).values()) if n > 1 else 0 # Chai Wah Wu, Aug 31 2022

Formula

If A028234(n) = 1 [when n is a power of prime, in A000961], a(n) = A067029(n), otherwise a(n) = A067029(n) AND a(A028234(n)). [Here AND stands for bitwise-and, A004198.]

A268376 Numbers n for which A001222(n) > A267116(n).

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 24, 26, 30, 33, 34, 35, 36, 38, 39, 40, 42, 46, 51, 54, 55, 56, 57, 58, 60, 62, 65, 66, 69, 70, 72, 74, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 100, 102, 104, 105, 106, 108, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126, 129, 130, 132, 133, 134, 135, 136, 138, 140, 141
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Comments

Numbers n such that in their prime factorization n = p_1^e_1 * ... * p_k^e_k, there is at least one pair of exponents e_i and e_j (i and j distinct), such that their base-2 representations have at least one shared digit-position in which both exponents have 1-bit.

Examples

			n = 6 = 2^1 * 3^1 is included as both exponents, 1 and 1 ("1" in binary) have both 1-bit in position 0 of their binary representations.
n = 24 = 2^3 * 3^1 is included as both exponents, 1 and 3 ("01" and "11" in binary) have both 1-bit in position 0 of their binary representations.
n = 36 = 2^2 * 3^2 is included as both exponents, 2 and 2 ("10" in binary) have both 1-bit in position 1 of their binary representations.
n = 60 = 2^2 * 3^1 * 5^1 is included as the exponents of 3 and 5, both of which are 1, have both 1-bit in position 1 of their binary representations.
		

Crossrefs

Indices of nonzeros in A268374.
Subsequence of A002808 and A024619.
Cf. A268375 (complement).
Cf. A260730 (subsequence).
Cf. also A267117.
Differs from A067582(n+1) for the first time at n=25, where a(n) = 60, a value which is missing from A067582.

Programs

  • Mathematica
    Select[Range@ 144, PrimeOmega@ # > BitOr @@ Map[Last, FactorInteger@ #] &] (* Michael De Vlieger, Feb 04 2016 *)

A267114 Numbers n for which A001222(n) = A267115(n) + A267116(n).

Original entry on oeis.org

1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 129, 133, 134, 135, 136, 141, 142, 143, 144
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Examples

			6 = 2^1 * 3^1 is included as bitwise-or of its exponents is 1 and likewise bitwise-and(1,1) = 1 and 1+1 = A001222(6) = 2, the number of the prime factors of 6 when counted with multiplicity.
12 = 2^2 * 3^1 is included as bitwise-or of its exponents ("10" and "01" in binary) is 3 ("11"), bitwise-and(1,2) = 0 and 3+0 = A001222(12).
60 = 2^2 * 3^1 * 5^1 is NOT included as bitwise-or(2,1,1) = 3, bitwise-and(2,1,1) = 0 and 3+0 < 4 = A001222(60).
		

Crossrefs

Differs from A030231 for the first time at n=118, where A030231(118) = 210 (= 2*3*5*7), which term is missing from this sequence.
a(n+1) differs from A007774 for the first time at n=375, as a(376) = 720 = 2^4 * 3^2 * 5^1.
Cf. A007774 (subsequence).

Programs

  • Mathematica
    {1}~Join~Select[Range@ 144, Function[n, PrimeOmega@ n == BitAnd @@ # + BitOr @@ # &@ Map[Last, FactorInteger@ n]]] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    is(n)=if(n>1, my(f=factor(n)[,2]); fold(bitand, f) + fold(bitor, f) == vecsum(f), 1) \\ Charles R Greathouse IV, Aug 04 2016

Extensions

Erroneous claim corrected by Antti Karttunen, Feb 07 2016
Showing 1-4 of 4 results.