cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A331591 a(n) is the number of distinct prime factors of A225546(n), or equally, number of distinct prime factors of A293442(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jan 21 2020

Keywords

Comments

a(n) is the number of terms in the unique factorization of n into powers of squarefree numbers with distinct exponents that are powers of 2. See A329332 for a description of the relationship between this factorization, canonical (prime power) factorization and A225546.
The result depends only on the prime signature of n.
a(n) is the number of distinct bit-positions where there is a 1-bit in the binary representation of an exponent in the prime factorization of n. - Antti Karttunen, Feb 05 2020
The first 3 is a(128) = a(2^1 * 2^2 * 2^4) = 3 and in general each m occurs first at position 2^(2^m-1) = A058891(m+1). - Peter Munn, Mar 07 2022

Examples

			From _Peter Munn_, Jan 28 2020: (Start)
The factorization of 6 into powers of squarefree numbers with distinct exponents that are powers of 2 is 6 = 6^(2^0) = 6^1, which has 1 term. So a(6) = 1.
Similarly, 40 = 10^(2^0) * 2^(2^1) = 10^1 * 2^2 = 10 * 4, which has 2 terms. So a(40) = 2.
Similarly, 320 = 5^(2^0) * 2^(2^1) * 2^(2^2) = 5^1 * 2^2 * 2^4 = 5 * 4 * 16, which has 3 terms. So a(320) = 3.
10^100 (a googol) factorizes in this way as 10^4 * 10^32 * 10^64. So a(10^100) = 3.
(End)
		

Crossrefs

Sequences with related definitions: A001221, A331309, A331592, A331593, A331740.
Positions of records: A058891.
Positions of 1's: A340682.
Sequences used to express relationships between the terms: A007913, A008833, A059796, A331590.

Programs

  • Mathematica
    Array[PrimeNu@ If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] (* Michael De Vlieger, Jan 24 2020 *)
    f[e_] := Position[Reverse[IntegerDigits[e, 2]], 1] // Flatten; a[n_] := CountDistinct[Flatten[f /@ FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Dec 23 2023 *)
  • PARI
    A331591(n) = if(1==n,0,my(f=factor(n),u=#binary(vecmax(f[, 2])),xs=vector(u),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),xs[i]++)); m<<=1); #select(x -> (x>0),xs));
    
  • PARI
    A331591(n) = if(1==n, 0, hammingweight(fold(bitor, factor(n)[, 2]))); \\ Antti Karttunen, Feb 05 2020
    
  • PARI
    A331591(n) = if(n==1, 0, (core(n)>1) + A331591(core(n,1)[2])) \\ Peter Munn, Mar 08 2022

Formula

a(n) = A001221(A293442(n)) = A001221(A225546(n)).
From Peter Munn, Jan 28 2020: (Start)
a(n) = A000120(A267116(n)).
a(n) = a(A007913(n)) + a(A008833(n)).
For m >= 2, a(A005117(m)) = 1.
a(n^2) = a(n).
(End)
a(n) <= A331740(n) <= A048675(n) <= A293447(n). - Antti Karttunen, Feb 05 2020
From Peter Munn, Mar 07 2022: (Start)
a(n) <= A299090(n).
a(A337533(n)) = A299090(A337533(n)).
a(A337534(n)) < A299090(A337534(n)).
max(a(n), a(k)) <= a(A059796(n, k)) = a(A331590(n, k)) <= a(n) + a(k).
(End)

A191555 a(n) = Product_{k=1..n} prime(k)^(2^(n-k)).

Original entry on oeis.org

1, 2, 12, 720, 3628800, 144850083840000, 272760108249915378892800000000, 1264767303092594444142256488682840323816161280000000000000000
Offset: 0

Views

Author

Rick L. Shepherd, Jun 06 2011

Keywords

Comments

x^(2^n) - a(n) is the minimal polynomial over Q for the algebraic number sqrt(p(1)*sqrt(p(2)*...*sqrt(p(n-1)*sqrt(p(n)))...)), where p(k) is the k-th prime. Each such monic polynomial is irreducible by Eisenstein's Criterion (using p = p(n)).
A prime version of Somos's quadratic recurrence sequence A052129(n) = A052129(n-1)^2 * n = Product_{k=1..n} k^(2^(n-k)). - Jonathan Sondow, Mar 29 2014
All positive integers have unique factorizations into powers of distinct primes, and into powers of squarefree numbers with distinct exponents that are powers of 2. (See A329332 for a description of the relationship between the two.) a(n) is the least number such that both factorizations have n factors. - Peter Munn, Dec 15 2019
From Peter Munn, Jan 24 2020 to Feb 06 2020: (Start)
For n >= 0, a(n+1) is the n-th power of 12 in the monoid defined by A306697.
a(n) is the least positive integer that cannot be expressed as the product of fewer than n terms of A072774 (powers of squarefree numbers).
All terms that are less than the order of the Monster simple group (A003131) are divisors of the group's order, with a(6) exceeding its square root.
(End)
It is remarkable that 4 of the first 5 terms are factorials. - Hal M. Switkay, Jan 21 2025

Examples

			a(1) = 2^1 = 2 and x^2 - 2 is the minimal polynomial for the algebraic number sqrt(2).
a(4) = 2^8*3^4*5^2*7^1 = 3628800 and x^16 - 3628800 is the minimal polynomial for the algebraic number sqrt(2*sqrt(3*sqrt(5*sqrt(7)))).
		

Crossrefs

Sequences with related definitions: A006939, A052129, A191554, A239350 (and thence A239349), A252738, A266639.
A000290, A003961, A059896, A306697 are used to express relationship between terms of this sequence.
Subsequence of A025487, A138302, A225547, A267117 (apart from a(1) = 2), A268375, A331593.
Antidiagonal products of A329050.

Programs

  • Magma
    [n le 1 select 2 else Self(n-1)^2*NthPrime(n): n in [1..10]]; // Vincenzo Librandi, Feb 06 2016
  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1)^2*ithprime(n))
        end:
    seq(a(n), n=0..8);  # Alois P. Heinz, Mar 05 2020
  • Mathematica
    RecurrenceTable[{a[1] == 2, a[n] == a[n-1]^2 Prime[n]}, a, {n, 10}] (* Vincenzo Librandi, Feb 06 2016 *)
    Table[Product[Prime[k]^2^(n-k),{k,n}],{n,0,10}] (* or *) nxt[{n_,a_}]:={n+1,a^2 Prime[n+1]}; NestList[nxt,{0,1},10][[All,2]] (* Harvey P. Dale, Jan 07 2022 *)
  • PARI
    a(n) = prod(k=1, n, prime(k)^(2^(n-k)))
    
  • Scheme
    ;; Two variants, both with memoization-macro definec.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000040 n) (A000290 (A191555 (- n 1)))))) ;; After the original recurrence.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000079 (A000079 (- n 1))) (A003961 (A191555 (- n 1)))))) ;; After the alternative recurrence - Antti Karttunen, Feb 06 2016
    

Formula

For n > 0, a(n) = a(n-1)^2 * prime(n); a(0) = 1. [edited to extend to a(0) by Peter Munn, Feb 13 2020]
a(0) = 1; for n > 0, a(n) = 2^(2^(n-1)) * A003961(a(n-1)). - Antti Karttunen, Feb 06 2016, edited Feb 13 2020 because of the new prepended starting term.
For n > 1, a(n) = A306697(a(n-1),12) = A059896(a(n-1)^2, A003961(a(n-1))). - Peter Munn, Jan 24 2020

Extensions

a(0) added by Peter Munn, Feb 13 2020

A331301 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = min(n, A225546(n)) for all other n, except for odd primes p, f(p) = 0.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 5, 6, 7, 3, 8, 3, 9, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 7, 22, 23, 24, 19, 3, 25, 26, 27, 3, 28, 3, 29, 30, 31, 3, 13, 32, 33, 34, 35, 3, 36, 37, 38, 39, 40, 3, 41, 3, 42, 43, 10, 44, 45, 3, 46, 47, 48, 3, 36, 3, 49, 50, 51, 52, 53, 3, 54, 17, 55, 3, 56, 57, 58, 59, 60, 3, 61, 62, 63, 64, 65, 66, 27, 3, 67, 68, 69, 3, 70, 3, 71, 72
Offset: 1

Views

Author

Antti Karttunen, Jan 21 2020

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A064179(i) = A064179(j),
a(i) = a(j) => A064547(i) = A064547(j),
a(i) = a(j) => A302777(i) = A302777(j),
a(i) = a(j) => A331308(i) = A331308(j),
a(i) = a(j) => A331287(i) = A331287(j),
a(i) = a(j) => A331592(i) = A331592(j).

Crossrefs

Programs

  • PARI
    up_to = 10000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux331301(n) = if((n%2)&&isprime(n),0,A331288(n)); \\ Needs also code from A331288.
    v331301 = rgs_transform(vector(up_to, n, Aux331301(n)));
    A331301(n) = v331301[n];

A331308 a(n) = min(d(n), d(A225546(n))), where d gives the number of divisors of n, A000005.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 2, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 8, 2, 4, 6, 6, 4, 8, 2, 10, 3, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 8, 2, 6, 6, 6, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Jan 21 2020

Keywords

Comments

This is not equal to A000005(A331288(n)). The first difference is at n=100, where a(100) = 6, while A000005(A331288(100)) = 9. Note that A225546(100) = 243 and d(243) = 6 < d(100) = 9.

Crossrefs

Formula

a(n) = min(A000005(n), A331309(n)).

A331593 Numbers k that have the same number of distinct prime factors as A225546(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 28, 29, 31, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117, 121, 124, 127, 131, 135, 136, 137, 139, 144, 147, 148, 149
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jan 21 2020

Keywords

Comments

Numbers k for which A001221(k) = A331591(k).
Numbers k that have the same number of terms in their factorization into powers of distinct primes as in their factorization into powers of squarefree numbers with distinct exponents that are powers of 2. See A329332 for a description of the relationship between the two factorizations and A225546.
If k is included, then all such x that A046523(x) = k are also included, i.e., all numbers with the same prime signature as k. Notably, primes (A000040) are included, but squarefree semiprimes (A006881) are not.
k^2 is included if and only if k is included, for example A001248 is included, but A085986 is not.

Examples

			There are 2 terms in the factorization of 36 into powers of distinct primes, which is 36 = 2^2 * 3^2 = 4 * 9; but only 1 term in its factorization into powers of squarefree numbers with distinct exponents that are powers of 2, which is 36 = 6^(2^1). So 36 is not included.
There are 2 terms in the factorization of 40 into powers of distinct primes, which is 40 = 2^3 * 5^1 = 8 * 5; and also 2 terms in its factorization into powers of squarefree numbers with distinct exponents that are powers of 2, which is 40 = 10^(2^0) * 2^(2^1) = 10 * 4. So 40 is included.
		

Crossrefs

Sequences with related definitions: A001221, A331591, A331592.
Subsequences of complement: A006881, A056824, A085986, A120944, A177492.

Programs

  • Mathematica
    Select[Range@ 150, Equal @@ PrimeNu@ {#, If[# == 1, 1, Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]]} &] (* Michael De Vlieger, Jan 26 2020 *)
  • PARI
    A331591(n) = if(1==n,0,my(f=factor(n),u=#binary(vecmax(f[, 2])),xs=vector(u),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),xs[i]++)); m<<=1); #select(x -> (x>0),xs));
    k=0; n=0; while(k<105, n++; if(omega(n)==A331591(n), k++; print1(n,", ")));

Formula

{a(n)} = {k : A001221(k) = A000120(A267116(k))}.

A353745 Number of runs in the ordered prime signature of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 20 2022

Keywords

Comments

First differs from A071625 at a(90) = 3.
First differs from A331592 at a(90) = 3.
A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The prime indices of 630 are {1,2,2,3,4}, with multiplicities {1,2,1,1}, with runs {{1},{2},{1,1}}, so a(630) = 3.
		

Crossrefs

Positions of first appearances are A354233.
A001222 counts prime factors, distinct A001221.
A005361 gives product of prime signature, firsts A353500/A085629.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A182850/A323014 give frequency depth, counted by A225485/A325280.
Cf. also A329747.

Programs

  • Mathematica
    Table[Length[Split[Last/@If[n==1,{},FactorInteger[n]]]],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    runlengths(lista) = if(!#lista, lista, if(1==#lista, List([1]), my(runs=List([]), rl=1); for(i=1, #lista, if((i < #lista) && (lista[i]==lista[i+1]), rl++, listput(runs,rl); rl=1)); (runs)));
    A353745(n) = #runlengths(runlengths(pis_to_runs(n))); \\ Antti Karttunen, Jan 20 2025
Showing 1-7 of 7 results.