A331590 Square array A(n,k) = A225546(A225546(n) * A225546(k)), n >= 1, k >= 1, read by descending antidiagonals.
1, 2, 2, 3, 3, 3, 4, 6, 6, 4, 5, 8, 5, 8, 5, 6, 10, 12, 12, 10, 6, 7, 5, 15, 9, 15, 5, 7, 8, 14, 10, 20, 20, 10, 14, 8, 9, 12, 21, 24, 7, 24, 21, 12, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 15, 27, 18, 35, 15, 35, 18, 27, 15, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24, 33, 40, 45, 20, 11, 20, 45, 40, 33, 24, 13
Offset: 1
Examples
From _Antti Karttunen_, Feb 02 2020: (Start) The top left 16 X 16 corner of the array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ... 2, 3, 6, 8, 10, 5, 14, 12, 18, 15, 22, 24, 26, 21, 30, 32, ... 3, 6, 5, 12, 15, 10, 21, 24, 27, 30, 33, 20, 39, 42, 7, 48, ... 4, 8, 12, 9, 20, 24, 28, 18, 36, 40, 44, 27, 52, 56, 60, 64, ... 5, 10, 15, 20, 7, 30, 35, 40, 45, 14, 55, 60, 65, 70, 21, 80, ... 6, 5, 10, 24, 30, 15, 42, 20, 54, 7, 66, 40, 78, 35, 14, 96, ... 7, 14, 21, 28, 35, 42, 11, 56, 63, 70, 77, 84, 91, 22, 105, 112, ... 8, 12, 24, 18, 40, 20, 56, 27, 72, 60, 88, 54, 104, 84, 120, 128, ... 9, 18, 27, 36, 45, 54, 63, 72, 25, 90, 99, 108, 117, 126, 135, 144, ... 10, 15, 30, 40, 14, 7, 70, 60, 90, 21, 110, 120, 130, 105, 42, 160, ... 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 13, 132, 143, 154, 165, 176, ... 12, 24, 20, 27, 60, 40, 84, 54, 108, 120, 132, 45, 156, 168, 28, 192, ... 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 156, 17, 182, 195, 208, ... 14, 21, 42, 56, 70, 35, 22, 84, 126, 105, 154, 168, 182, 33, 210, 224, ... 15, 30, 7, 60, 21, 14, 105, 120, 135, 42, 165, 28, 195, 210, 35, 240, ... 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 81, ... (End)
Links
- Antti Karttunen, Antidiagonals n = 1..144, flattened
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..80200; (antidiagonals n = 1..400)
- Eric Weisstein's World of Mathematics, Monoid
Crossrefs
Programs
-
PARI
up_to = 1275; A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n)); A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; A331590sq(x,y) = if(1==x,y,if(1==y,x, my(fx=factor(x),fy=factor(y),u=max(#binary(vecmax(fx[, 2])),#binary(vecmax(fy[, 2]))),prodsx=vector(u,x,1),m=1); for(i=1,u,for(k=1,#fx~, if(bitand(fx[k,2],m),prodsx[i] *= fx[k,1])); for(k=1,#fy~, if(bitand(fy[k,2],m),prodsx[i] *= fy[k,1])); m<<=1); prod(i=1,u,A019565(A048675(prodsx[i]))^(1<<(i-1))))); A331590list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A331590sq(col,(a-(col-1))))); (v); }; v331590 = A331590list(up_to); A331590(n) = v331590[n]; \\ Antti Karttunen, Feb 02 2020
Formula
Main derived identities: (Start)
A(n,k) = A(k,n).
A(1,n) = n.
A(n, A(m,k)) = A(A(n,m), k).
A(m,m) = A003961(m).
A(n^2, k^2) = A(n,k)^2.
(End)
Characterization of conditions for A(n,k) = n * k: (Start)
The following 4 conditions are equivalent:
(1) A(n,k) = n * k;
(2) A(n,k) = A059897(n,k);
(3) A(n,k) = A059896(n,k);
(4) A059895(n,k) = 1.
If gcd(n,k) = 1, A(n,k) = n * k.
The previous formula implies A(n,k) = n * k in the following cases:
(1) for n = A005117(m), k = j^2;
(2) more generally for n = A005117(m_1)^(2^i_1), k = A005117(m_2)^(2^i_2), with A004198(i_1, i_2) = 0.
(End)
Comments