cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A331591 a(n) is the number of distinct prime factors of A225546(n), or equally, number of distinct prime factors of A293442(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jan 21 2020

Keywords

Comments

a(n) is the number of terms in the unique factorization of n into powers of squarefree numbers with distinct exponents that are powers of 2. See A329332 for a description of the relationship between this factorization, canonical (prime power) factorization and A225546.
The result depends only on the prime signature of n.
a(n) is the number of distinct bit-positions where there is a 1-bit in the binary representation of an exponent in the prime factorization of n. - Antti Karttunen, Feb 05 2020
The first 3 is a(128) = a(2^1 * 2^2 * 2^4) = 3 and in general each m occurs first at position 2^(2^m-1) = A058891(m+1). - Peter Munn, Mar 07 2022

Examples

			From _Peter Munn_, Jan 28 2020: (Start)
The factorization of 6 into powers of squarefree numbers with distinct exponents that are powers of 2 is 6 = 6^(2^0) = 6^1, which has 1 term. So a(6) = 1.
Similarly, 40 = 10^(2^0) * 2^(2^1) = 10^1 * 2^2 = 10 * 4, which has 2 terms. So a(40) = 2.
Similarly, 320 = 5^(2^0) * 2^(2^1) * 2^(2^2) = 5^1 * 2^2 * 2^4 = 5 * 4 * 16, which has 3 terms. So a(320) = 3.
10^100 (a googol) factorizes in this way as 10^4 * 10^32 * 10^64. So a(10^100) = 3.
(End)
		

Crossrefs

Sequences with related definitions: A001221, A331309, A331592, A331593, A331740.
Positions of records: A058891.
Positions of 1's: A340682.
Sequences used to express relationships between the terms: A007913, A008833, A059796, A331590.

Programs

  • Mathematica
    Array[PrimeNu@ If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] (* Michael De Vlieger, Jan 24 2020 *)
    f[e_] := Position[Reverse[IntegerDigits[e, 2]], 1] // Flatten; a[n_] := CountDistinct[Flatten[f /@ FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Dec 23 2023 *)
  • PARI
    A331591(n) = if(1==n,0,my(f=factor(n),u=#binary(vecmax(f[, 2])),xs=vector(u),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),xs[i]++)); m<<=1); #select(x -> (x>0),xs));
    
  • PARI
    A331591(n) = if(1==n, 0, hammingweight(fold(bitor, factor(n)[, 2]))); \\ Antti Karttunen, Feb 05 2020
    
  • PARI
    A331591(n) = if(n==1, 0, (core(n)>1) + A331591(core(n,1)[2])) \\ Peter Munn, Mar 08 2022

Formula

a(n) = A001221(A293442(n)) = A001221(A225546(n)).
From Peter Munn, Jan 28 2020: (Start)
a(n) = A000120(A267116(n)).
a(n) = a(A007913(n)) + a(A008833(n)).
For m >= 2, a(A005117(m)) = 1.
a(n^2) = a(n).
(End)
a(n) <= A331740(n) <= A048675(n) <= A293447(n). - Antti Karttunen, Feb 05 2020
From Peter Munn, Mar 07 2022: (Start)
a(n) <= A299090(n).
a(A337533(n)) = A299090(A337533(n)).
a(A337534(n)) < A299090(A337534(n)).
max(a(n), a(k)) <= a(A059796(n, k)) = a(A331590(n, k)) <= a(n) + a(k).
(End)

A331733 a(n) = sigma(A225546(n)), where sigma is the sum of divisors.

Original entry on oeis.org

1, 3, 7, 4, 31, 15, 511, 12, 13, 63, 131071, 28, 8589934591, 1023, 127, 6, 36893488147419103231, 39, 680564733841876926926749214863536422911, 124, 2047, 262143, 231584178474632390847141970017375815706539969331281128078915168015826259279871, 60, 121, 17179869183, 91, 2044
Offset: 1

Views

Author

Antti Karttunen, Feb 02 2020

Keywords

Crossrefs

Cf. A323243, A323173, A324054, A324184, A324545 for other permutations of sigma, and also A324573, A324653.

Programs

  • Mathematica
    Array[If[# == 1, 1, DivisorSigma[1, #] &@ Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]] &, 28] (* Michael De Vlieger, Feb 08 2020 *)
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331733(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,(prime(i)^(1+A048675(prods[i]))-1)/(prime(i)-1)));

Formula

a(n) = A000203(A225546(n)).
For all n >= 1, A000035(a(A016754(n))) = 1. [Result is odd for all odd squares]

A331740 Number of prime factors in A225546(n), counted with multiplicity.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 2, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 4, 4, 33, 4, 9, 512, 7, 1024, 2, 18, 65, 12, 3, 2048, 129, 34, 6, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 5, 20, 10, 130, 513, 65536, 7, 131072, 1025, 10, 2, 36, 19, 262144, 65, 258, 13, 524288, 4, 1048576, 2049, 6
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2020

Keywords

Crossrefs

Cf. also A331309, A331591.
Positions of 1's: A001146.

Programs

  • Mathematica
    Array[If[# == 1, 0, PrimeOmega@ Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]] &, 75] (* Michael De Vlieger, Feb 08 2020 *)
  • PARI
    A331740(n) = if(1==n,0,my(f=factor(n)); sum(i=1,#f~,hammingweight(f[i,2])*(2^(primepi(f[i,1])-1))));

Formula

Additive with a(p^e) = A000120(e) * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n).
a(n) = A001222(A225546(n)).
A331591(n) <= a(n) <= A048675(n).
From Peter Munn, Sep 11 2021: (Start)
a(A001146(m)) = 1.
a(A331590(m, k)) = a(m) + a(k).
For squarefree k, a(k*m^2) = a(k) + a(m) = A048675(k) + a(m).
(End)

A331308 a(n) = min(d(n), d(A225546(n))), where d gives the number of divisors of n, A000005.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 2, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 8, 2, 4, 6, 6, 4, 8, 2, 10, 3, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 8, 2, 6, 6, 6, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Jan 21 2020

Keywords

Comments

This is not equal to A000005(A331288(n)). The first difference is at n=100, where a(100) = 6, while A000005(A331288(100)) = 9. Note that A225546(100) = 243 and d(243) = 6 < d(100) = 9.

Crossrefs

Formula

a(n) = min(A000005(n), A331309(n)).

A335914 a(n) = A038040(A225546(n)).

Original entry on oeis.org

1, 4, 12, 6, 80, 32, 2304, 24, 27, 192, 1114112, 72, 141733920768, 5120, 448, 10, 1199038364791120855040, 108, 43896425332801061786775324358698099277824, 480, 11264, 2359296, 29758566933990262223857743147232792318290386059069624958140599090033674317463552, 192, 405, 292057776128, 324, 13824
Offset: 1

Views

Author

Antti Karttunen, Jul 08 2020

Keywords

Comments

Question: Is it possible for a(n)/A331733(n) to be an integer when n is a square > 1? This is equivalent to the question whether there are odd Harmonic numbers (A001599) larger than one.

Crossrefs

Programs

  • Mathematica
    Array[# DivisorSigma[0, #] &@ If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jul 08 2020 *)
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A335914(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,(1+A048675(prods[i]))*(prime(i)^A048675(prods[i]))));

Formula

a(n) = A225546(n) * A331309(n).
Showing 1-6 of 6 results.