cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A331741 Squares s such that A331733(s) = sigma(A225546(n)) is congruent to 2 modulo 4.

Original entry on oeis.org

16, 144, 400, 784, 1936, 2704, 3600, 4624, 5776, 7056, 8464, 10000, 13456, 15376, 17424, 19600, 21904, 24336, 26896, 29584, 35344, 38416, 41616, 44944, 48400, 51984, 55696, 59536, 67600, 71824, 76176, 80656, 85264, 90000, 94864, 99856, 104976, 110224, 115600, 121104, 126736, 132496, 138384, 144400, 150544, 163216, 169744, 176400
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2020

Keywords

Comments

Squares s for which A331733(s) is two times an odd number, i.e., squares s such that A007814(A331733(s)) == 1.
For each term k present, A006519(k) = 2^(2^e), with A000040(1+e) == 1 (mod 4). See A191218, A228058.
Equal to the sequence A225546(A191218(n)), for n >= 1, when its elements are sorted into ascending order.

Crossrefs

Programs

  • Mathematica
    Select[Range[100]^2, Mod[DivisorSigma[1, If[# == 1, 1, Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@# + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]]], 4] == 2 &] (* Michael De Vlieger, Feb 08 2020 *)
  • PARI
    k=0; for(n=1,500,if(!(n%2)&&(1==A007814(A331733(n^2))),k++; write("b331741.txt", k, " ", n^2); print(n^2, " -> ", factor(n^2),", ")));

Formula

{n: A010052(n)*A007814(A331733(n)) == 1}.

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A166486 Periodic sequence [0,1,1,1] of length 4; Characteristic function of numbers that are not multiples of 4.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 15 2009

Keywords

Examples

			G.f. = x + x^2 + x^3 + x^5 + x^6 + x^7 + x^9 + x^10 + x^11 + x^13 + x^14 + ...
		

Crossrefs

Characteristic function of A042968, whose complement A008586 gives the positions of zeros (after its initial term).
Absolute values of A046978, A075553, A131729, A358839, and for n >= 1, also of A112299 and of A257196.
Sequence A152822 shifted by two terms.
Row 3 of A225145, Column 2 of A229940 (after the initial term).
First differences of A057353. Sum of A359370 and A359372.
Cf. A000035, A011655, A011558, A097325, A109720, A168181, A168182, A168184, A145568, A168185 (characteristic functions for numbers that are not multiples of k = 2, 3 and 5..12).
Cf. A010873, A033436, A069733 (inverse Möbius transform), A121262 (one's complement), A190621 [= n*a(n)], A355689 (Dirichlet inverse).

Programs

  • Magma
    [Ceiling(n/4)-Floor(n/4) : n in [0..50]]; // Wesley Ivan Hurt, Jun 20 2014
    
  • Maple
    seq(1/2*((n^3+n) mod 4), n=0..50); # Gary Detlefs, Mar 20 2010
  • Mathematica
    PadRight[{},120,{0,1,1,1}] (* Harvey P. Dale, Jul 04 2013 *)
    Table[Ceiling[n/4] - Floor[n/4], {n, 0, 100}] (* Wesley Ivan Hurt, Jun 20 2014 *)
    a[ n_] := Sign[ Mod[n, 4]]; (* Michael Somos, May 05 2015 *)
  • PARI
    {a(n) = !!(n%4)};
    
  • Python
    def A166486(n): return (0,1,1,1)[n&3] # Chai Wah Wu, Jan 03 2023

Formula

G.f.: (x + x^2 + x^3) / (1 - x^4) = x * (1 + x + x^2) / ((1 - x) * (1 + x) * (1 + x^2)) = x * (1 - x^3) / ((1 - x) * (1 - x^4)).
a(n) = (3 - i^n - (-i)^n - (-1)^n) / 4, where i=sqrt(-1).
Sum_{k>0} a(k)/(k*3^k) = log(5)/4.
From Reinhard Zumkeller, Nov 30 2009: (Start)
Multiplicative with a(p^e) = (if p=2 then 0^(e-1) else 1), p prime and e>0.
a(n) = 1-A121262(n).
a(A042968(n))=1; a(A008586(n))=0.
A033436(n) = Sum{k=0..n} a(k)*(n-k). (End)
a(n) = 1/2*((n^3+n) mod 4). - Gary Detlefs, Mar 20 2010
a(n) = (Fibonacci(n)*Fibonacci(3n) mod 3)/2. - Gary Detlefs Dec 21 2010
Euler transform of length 4 sequence [ 1, 0, -1, 1]. - Michael Somos, Feb 12 2011
Dirichlet g.f. (1-1/4^s)*zeta(s). - R. J. Mathar, Feb 19 2011
a(n) = Fibonacci(n)^2 mod 3. - Gary Detlefs, May 16 2011
a(n) = -1/4*cos(Pi*n)-1/2*cos(1/2*Pi*n)+3/4. - Leonid Bedratyuk, May 13 2012
For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = ceiling(n/4) - floor(n/4). - Wesley Ivan Hurt, Jun 20 2014
a(n) = a(-n) for all n in Z. - Michael Somos, May 05 2015
For n >= 1, a(n) = A053866(A225546(n)) = A000035(A331733(n)). - Antti Karttunen, Jul 07 2020
a(n) = signum(n mod 4). - Alois P. Heinz, May 12 2021
From Antti Karttunen, Dec 28 2022: (Start)
a(n) = [A010873(n) > 0], where [ ] is the Iverson bracket.
a(n) = abs(A046978(n)) = abs(A075553(n)) = abs(A131729(n)) = abs(A358839(n)).
For all n >= 1, a(n) = abs(A112299(n)) = abs(A257196(n))
a(n) = A152822(2+n).
a(n) = A359370(n) + A359372(n). (End)
E.g.f.: (cosh(x) - cos(x))/2 + sinh(x). - Stefano Spezia, Aug 04 2025

Extensions

Secondary definition (from Reinhard Zumkeller's Nov 30 2009 comment) added to the name by Antti Karttunen, Dec 20 2022

A331734 a(n) = A033879(A225546(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 0, 5, 1, 1, -4, 1, 1, 1, 4, 1, -3, 1, -28, 1, 1, 1, -12, 41, 1, -19, -508, 1, 1, 1, 2, 1, 1, 1, 14, 1, 1, 1, -60, 1, 1, 1, -131068, -115, 1, 1, -2, 3281, -39, 1, -8589934588, 1, -51, 1, -1020, 1, 1, 1, -124, 1, 1, -2035, 6, 1, 1, 1, -36893488147419103228, 1, 1, 1, -12, 1, 1, -199, -680564733841876926926749214863536422908
Offset: 1

Views

Author

Antti Karttunen, Feb 02 2020

Keywords

Crossrefs

Cf. A323244, A323174, A324055, A324185, A324546 for other permutations of the deficiency, and also A324574, A324654.

Programs

  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331734(n) = if(issquarefree(n),1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); (2*prod(i=1,u,prime(i)^A048675(prods[i]))) - prod(i=1,u,(prime(i)^(1+A048675(prods[i]))-1)/(prime(i)-1)));

Formula

a(n) = A033879(A225546(n)) = 2*A225546(n) - A331733(n).
For all n, a(A005117(n)) = 1. [It is not known if there are 1's in any other positions. See Jianing Song's Oct 13 2019 comment in A033879.]
For a necessary condition that a(s) would be zero for any square, see A331741.

A331735 a(n) = A009194(A225546(n)) = gcd(A225546(n), sigma(A225546(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 3, 1, 12, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 12, 1, 9, 1, 4, 1, 1, 1, 10, 1, 3, 1, 1, 1, 1, 1, 12, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 04 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[#, DivisorSigma[1, #]] &@ If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] (* Michael De Vlieger, Feb 12 2020 *)
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331735(n) = if(issquarefree(n),1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); gcd(prod(i=1,u,prime(i)^A048675(prods[i])), prod(i=1,u,(prime(i)^(1+A048675(prods[i]))-1)/(prime(i)-1))));

Formula

a(n) = A009194(A225546(n)) = gcd(A225546(n), A331733(n)).

A335914 a(n) = A038040(A225546(n)).

Original entry on oeis.org

1, 4, 12, 6, 80, 32, 2304, 24, 27, 192, 1114112, 72, 141733920768, 5120, 448, 10, 1199038364791120855040, 108, 43896425332801061786775324358698099277824, 480, 11264, 2359296, 29758566933990262223857743147232792318290386059069624958140599090033674317463552, 192, 405, 292057776128, 324, 13824
Offset: 1

Views

Author

Antti Karttunen, Jul 08 2020

Keywords

Comments

Question: Is it possible for a(n)/A331733(n) to be an integer when n is a square > 1? This is equivalent to the question whether there are odd Harmonic numbers (A001599) larger than one.

Crossrefs

Programs

  • Mathematica
    Array[# DivisorSigma[0, #] &@ If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jul 08 2020 *)
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A335914(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,(1+A048675(prods[i]))*(prime(i)^A048675(prods[i]))));

Formula

a(n) = A225546(n) * A331309(n).

A335913 a(n) = A225546(sigma(n)).

Original entry on oeis.org

1, 4, 3, 256, 8, 12, 6, 64, 4294967296, 18, 12, 768, 512, 24, 24
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2020

Keywords

Comments

Term a(16) has 309 digits (1025 bits).
This is not multiplicative. Even though a(2*3) = a(2)*a(3), a(2*7) = a(2)*a(7), and a(3*5) = a(3)*a(5), we still have a(2*5) = 18 <> a(2)*a(5) = 4*8 = 32.

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &@ DivisorSigma[1, #] &, 15] (* Michael De Vlieger, Jul 08 2020 *)
  • PARI
    A335913(n) = A225546(sigma(n));

Formula

a(n) = A225546(A000203(n)).
A048675(a(n)) = A331750(n).
Showing 1-7 of 7 results.