cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A191555 a(n) = Product_{k=1..n} prime(k)^(2^(n-k)).

Original entry on oeis.org

1, 2, 12, 720, 3628800, 144850083840000, 272760108249915378892800000000, 1264767303092594444142256488682840323816161280000000000000000
Offset: 0

Views

Author

Rick L. Shepherd, Jun 06 2011

Keywords

Comments

x^(2^n) - a(n) is the minimal polynomial over Q for the algebraic number sqrt(p(1)*sqrt(p(2)*...*sqrt(p(n-1)*sqrt(p(n)))...)), where p(k) is the k-th prime. Each such monic polynomial is irreducible by Eisenstein's Criterion (using p = p(n)).
A prime version of Somos's quadratic recurrence sequence A052129(n) = A052129(n-1)^2 * n = Product_{k=1..n} k^(2^(n-k)). - Jonathan Sondow, Mar 29 2014
All positive integers have unique factorizations into powers of distinct primes, and into powers of squarefree numbers with distinct exponents that are powers of 2. (See A329332 for a description of the relationship between the two.) a(n) is the least number such that both factorizations have n factors. - Peter Munn, Dec 15 2019
From Peter Munn, Jan 24 2020 to Feb 06 2020: (Start)
For n >= 0, a(n+1) is the n-th power of 12 in the monoid defined by A306697.
a(n) is the least positive integer that cannot be expressed as the product of fewer than n terms of A072774 (powers of squarefree numbers).
All terms that are less than the order of the Monster simple group (A003131) are divisors of the group's order, with a(6) exceeding its square root.
(End)
It is remarkable that 4 of the first 5 terms are factorials. - Hal M. Switkay, Jan 21 2025

Examples

			a(1) = 2^1 = 2 and x^2 - 2 is the minimal polynomial for the algebraic number sqrt(2).
a(4) = 2^8*3^4*5^2*7^1 = 3628800 and x^16 - 3628800 is the minimal polynomial for the algebraic number sqrt(2*sqrt(3*sqrt(5*sqrt(7)))).
		

Crossrefs

Sequences with related definitions: A006939, A052129, A191554, A239350 (and thence A239349), A252738, A266639.
A000290, A003961, A059896, A306697 are used to express relationship between terms of this sequence.
Subsequence of A025487, A138302, A225547, A267117 (apart from a(1) = 2), A268375, A331593.
Antidiagonal products of A329050.

Programs

  • Magma
    [n le 1 select 2 else Self(n-1)^2*NthPrime(n): n in [1..10]]; // Vincenzo Librandi, Feb 06 2016
  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1)^2*ithprime(n))
        end:
    seq(a(n), n=0..8);  # Alois P. Heinz, Mar 05 2020
  • Mathematica
    RecurrenceTable[{a[1] == 2, a[n] == a[n-1]^2 Prime[n]}, a, {n, 10}] (* Vincenzo Librandi, Feb 06 2016 *)
    Table[Product[Prime[k]^2^(n-k),{k,n}],{n,0,10}] (* or *) nxt[{n_,a_}]:={n+1,a^2 Prime[n+1]}; NestList[nxt,{0,1},10][[All,2]] (* Harvey P. Dale, Jan 07 2022 *)
  • PARI
    a(n) = prod(k=1, n, prime(k)^(2^(n-k)))
    
  • Scheme
    ;; Two variants, both with memoization-macro definec.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000040 n) (A000290 (A191555 (- n 1)))))) ;; After the original recurrence.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000079 (A000079 (- n 1))) (A003961 (A191555 (- n 1)))))) ;; After the alternative recurrence - Antti Karttunen, Feb 06 2016
    

Formula

For n > 0, a(n) = a(n-1)^2 * prime(n); a(0) = 1. [edited to extend to a(0) by Peter Munn, Feb 13 2020]
a(0) = 1; for n > 0, a(n) = 2^(2^(n-1)) * A003961(a(n-1)). - Antti Karttunen, Feb 06 2016, edited Feb 13 2020 because of the new prepended starting term.
For n > 1, a(n) = A306697(a(n-1),12) = A059896(a(n-1)^2, A003961(a(n-1))). - Peter Munn, Jan 24 2020

Extensions

a(0) added by Peter Munn, Feb 13 2020

A331287 a(n) = gcd(n, A225546(n)).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 2, 9, 2, 1, 12, 1, 2, 1, 1, 1, 18, 1, 4, 1, 2, 1, 24, 1, 2, 9, 4, 1, 2, 1, 2, 1, 2, 1, 9, 1, 2, 1, 8, 1, 2, 1, 4, 9, 2, 1, 4, 1, 2, 1, 4, 1, 18, 1, 8, 1, 2, 1, 12, 1, 2, 9, 1, 1, 2, 1, 4, 1, 2, 1, 18, 1, 2, 3, 4, 1, 2, 1, 80, 1, 2, 1, 12, 1, 2, 1, 8, 1, 18, 1, 4, 1, 2, 1, 8, 1, 2, 9, 1, 1, 2, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 20 2020

Keywords

Crossrefs

Cf. A225546, A225547 (fixed points), A297845, A331288, A331310, A331311.

Programs

  • PARI
    A331287(n) = gcd(n, A225546(n));
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331287(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,if(!(n%prime(i)),for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1]))); m<<=1); prod(i=1,u,prime(i)^min(valuation(n,prime(i)),A048675(prods[i]))));

Formula

a(n) = gcd(n, A225546(n)).
a(n) = A331310(n) * A331311(n).
a(A297845(n,9)) = A297845(a(n),9). - Peter Munn, Jan 24 2020

A331288 a(n) = min(n, A225546(n)).

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 6, 9, 10, 11, 12, 13, 14, 15, 5, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 10, 33, 34, 35, 27, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 20, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 15, 65, 66, 67, 68, 69, 70, 71, 54, 73, 74, 75, 76, 77, 78, 79, 80, 25, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 40
Offset: 1

Views

Author

Antti Karttunen, Jan 20 2020

Keywords

Comments

For all i, j:
a(i) = a(j) => A331287(i) = A331287(j).

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 1, Min[#, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]] &, 96] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A331288(n) = min(n, A225546(n));
    
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    A225546(n) = { my(f=factor(n)); for (i=1, #f~, my(p=f[i, 1]); f[i, 1] = A019565(f[i, 2]); f[i, 2] = 2^(primepi(p)-1); ); factorback(f); }; \\ From A225546
    \\ If the following returns 1, then it is certainly true that A225546(p^e) > n (where p^e is one of the divisors of n), thus A225546(n) > n follows:
    is_certainly_gt(p,e,n) = { my(b=A019565(e),j=(primepi(p)-1)); if(b>n,1,if((logint(b,2)*j)>logint(n,2),1,0)); };
    A331288(n) = if((1==n)||isprime(n),n,my(f=factor(n)); for(i=1,#f~,if(is_certainly_gt(f[i,1],f[i,2],n),return(n))); min(n, A225546(n)));

A331593 Numbers k that have the same number of distinct prime factors as A225546(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 28, 29, 31, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117, 121, 124, 127, 131, 135, 136, 137, 139, 144, 147, 148, 149
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jan 21 2020

Keywords

Comments

Numbers k for which A001221(k) = A331591(k).
Numbers k that have the same number of terms in their factorization into powers of distinct primes as in their factorization into powers of squarefree numbers with distinct exponents that are powers of 2. See A329332 for a description of the relationship between the two factorizations and A225546.
If k is included, then all such x that A046523(x) = k are also included, i.e., all numbers with the same prime signature as k. Notably, primes (A000040) are included, but squarefree semiprimes (A006881) are not.
k^2 is included if and only if k is included, for example A001248 is included, but A085986 is not.

Examples

			There are 2 terms in the factorization of 36 into powers of distinct primes, which is 36 = 2^2 * 3^2 = 4 * 9; but only 1 term in its factorization into powers of squarefree numbers with distinct exponents that are powers of 2, which is 36 = 6^(2^1). So 36 is not included.
There are 2 terms in the factorization of 40 into powers of distinct primes, which is 40 = 2^3 * 5^1 = 8 * 5; and also 2 terms in its factorization into powers of squarefree numbers with distinct exponents that are powers of 2, which is 40 = 10^(2^0) * 2^(2^1) = 10 * 4. So 40 is included.
		

Crossrefs

Sequences with related definitions: A001221, A331591, A331592.
Subsequences of complement: A006881, A056824, A085986, A120944, A177492.

Programs

  • Mathematica
    Select[Range@ 150, Equal @@ PrimeNu@ {#, If[# == 1, 1, Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]]} &] (* Michael De Vlieger, Jan 26 2020 *)
  • PARI
    A331591(n) = if(1==n,0,my(f=factor(n),u=#binary(vecmax(f[, 2])),xs=vector(u),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),xs[i]++)); m<<=1); #select(x -> (x>0),xs));
    k=0; n=0; while(k<105, n++; if(omega(n)==A331591(n), k++; print1(n,", ")));

Formula

{a(n)} = {k : A001221(k) = A000120(A267116(k))}.

A344534 For any number n with binary expansion Sum_{k = 1..m} 2^e_k (where 0 <= e_1 < ... < e_m), a(n) = Product_{k = 1..m} prime(1+A002262(e_k))^2^A025581(e_k) (where prime(k) denotes the k-th prime number).

Original entry on oeis.org

1, 2, 4, 8, 3, 6, 12, 24, 16, 32, 64, 128, 48, 96, 192, 384, 9, 18, 36, 72, 27, 54, 108, 216, 144, 288, 576, 1152, 432, 864, 1728, 3456, 5, 10, 20, 40, 15, 30, 60, 120, 80, 160, 320, 640, 240, 480, 960, 1920, 45, 90, 180, 360, 135, 270, 540, 1080, 720, 1440
Offset: 0

Views

Author

Rémy Sigrist, May 22 2021

Keywords

Comments

The ones in the binary expansion of n encode the Fermi-Dirac factors of a(n).
The following table gives the rank of the bit corresponding to the Fermi-Dirac factor p^2^k:
...
7| 9
5| 5 8
3| 2 4 7
2| 0 1 3 6
---+--------
p/k| 0 1 2 3 ...
This sequence is a bijection from the nonnegative integers to the positive integers with inverse A344536.
This sequence establishes a bijection from A261195 to A225547.
This sequence and A344535 each map between two useful choices for encoding sets of elements drawn from a 2-dimensional array. To give a very specific example, each mapping is an isomorphism between two alternative integer representations of the polynomial ring GF2[x,y]. The relevant set is {x^i*y^j : i, j >= 0}. The mappings between the two representations of the ring's addition operation are from XOR (A003987) to A059897(.,.) and for the multiplication operation, they are from A329331(.,.) to A329329(.,.). - Peter Munn, May 31 2021

Examples

			For n = 42:
- 42 = 2^5 + 2^3 + 2^1,
- so we have the following Fermi-Dirac factors p^2^k:
      5| X
      3|
      2|   X X
    ---+------
    p/k| 0 1 2
- a(42) = 2^2^1 * 2^2^2 * 5^2^0 = 320.
		

Crossrefs

Comparable mappings that also use Fermi-Dirac factors: A052330, A059900.
Maps binary operations A003987 to A059897, A329331 to A329329.

Programs

  • PARI
    A002262(n)=n-binomial(round(sqrt(2+2*n)), 2)
    A025581(n)=binomial(1+floor(1/2+sqrt(2+2*n)), 2)-(n+1)
    a(n) = { my (v=1, e); while (n, n-=2^e=valuation(n, 2); v* = prime(1 + A002262(e))^2^A025581(e)); v }

Formula

a(n) = A344535(A344531(n)).
a(n) = A344535(n) iff n belongs to A261195.
A064547(a(n)) = A000120(n).
a(A036442(n)) = prime(n).
a(A006125(n+1)) = 2^2^n for any n >= 0.
a(m + n) = a(m) * a(n) when m AND n = 0 (where AND denotes the bitwise AND operator).
From Peter Munn, Jun 06 2021: (Start)
a(n) = A225546(A344535(n)).
a(n XOR k) = A059897(a(n), a(k)), where XOR denotes bitwise exclusive-or, A003987.
a(A329331(n, k)) = A329329(a(n), a(k)).
(End)

A344535 For any number n with binary expansion Sum_{k = 1..m} 2^e_k (where 0 <= e_1 < ... < e_m), a(n) = Product_{k = 1..m} prime(1+A025581(e_k))^2^A002262(e_k) (where prime(k) denotes the k-th prime number).

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 24, 5, 10, 15, 30, 20, 40, 60, 120, 9, 18, 27, 54, 36, 72, 108, 216, 45, 90, 135, 270, 180, 360, 540, 1080, 16, 32, 48, 96, 64, 128, 192, 384, 80, 160, 240, 480, 320, 640, 960, 1920, 144, 288, 432, 864, 576, 1152, 1728, 3456, 720, 1440
Offset: 0

Views

Author

Rémy Sigrist, May 22 2021

Keywords

Comments

The ones in the binary expansion of n encode the Fermi-Dirac factors of a(n).
The following table gives the rank of the bit corresponding to the Fermi-Dirac factor p^2^k:
...
7| 6
5| 3 7
3| 1 4 8
2| 0 2 5 9
---+--------
p/k| 0 1 2 3 ...
This sequence is a bijection from the nonnegative integers to the positive integers with inverse A344537.
This sequence establishes a bijection from A261195 to A225547.

Examples

			For n = 42:
- 42 = 2^5 + 2^3 + 2^1,
- so we have the following Fermi-Dirac factors p^2^k:
      5| X
      3| X
      2|     X
    ---+------
    p/k| 0 1 2
- a(42) = 3^2^0 * 5^2^0 * 2^2^2 = 240.
		

Crossrefs

Programs

  • PARI
    A002262(n)=n-binomial(round(sqrt(2+2*n)), 2)
    A025581(n)=binomial(1+floor(1/2+sqrt(2+2*n)), 2)-(n+1)
    a(n) = { my (v=1, e); while (n, n-=2^e=valuation(n, 2); v *= prime(1 + A025581(e))^2^A002262(e)); v }

Formula

a(n) = A344534(A344531(n)).
a(n) = A344534(n) iff n belongs to A261195.
A064547(a(n)) = A000120(n).
a(A006125(n)) = prime(n) for any n > 0.
a(A036442(n+1)) = 2^2^n for any n >= 0.
a(m + n) = a(m) * a(n) when m AND n = 0 (where AND denotes the bitwise AND operator).

A225548 Numbers of the form prime(i)^2^(i-1) or prime(i)^2^(j-1)*prime(j)^2^(i-1) with i and j distinct integers.

Original entry on oeis.org

2, 9, 12, 80, 625, 1792, 2025, 321489, 720896, 5764801, 937890625, 5208653241, 55834574848, 2234039306640625, 45949729863572161, 313160411915961129, 313594649253062377472, 7123773809250362976481, 664987601339817047119140625, 992334624064536108066118386802209
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

These numbers are the "basic" fixed points of A225546.

Examples

			5764801 = 7^8 = prime(4)^2^(4-1); hence 5764801 is in the sequence.
2234039306640625 = 5^16*11^4 = prime(3)^2^(5-1)*prime(5)^2^(3-1); hence 2234039306640625 is in the sequence.
		

Crossrefs

A344536 Inverse permutation to A344534.

Original entry on oeis.org

0, 1, 4, 2, 32, 5, 512, 3, 16, 33, 16384, 6, 1048576, 513, 36, 8, 134217728, 17, 34359738368, 34, 516, 16385, 17592186044416, 7, 256, 1048577, 20, 514, 18014398509481984, 37, 36893488147419103232, 9, 16388, 134217729, 544, 18, 151115727451828646838272
Offset: 1

Views

Author

Rémy Sigrist, May 23 2021

Keywords

Comments

This sequence is additive.
This sequence establishes a bijection from A225547 to A261195.

Examples

			A344534(42) = 320, so a(320) = 42.
		

Crossrefs

Programs

  • PARI
    a(n) = { my (f=factor(n), v=0); for (k=1, #f~, my (x=primepi(f[k,1])-1, yy=f[k,2], y); while (yy, yy-=2^y=valuation(yy,2); v+=2^(x + (x+y)*
    (x+y+1)/2))); v }

Formula

a(prime(n)) = A036442(n).
a(2^2^n) = A006125(n+1) for any n >= 0.
A000120(a(n)) = A064547(n).
a(A225546(n)) = A344537(n).
a(n) = A344537(n) iff n belongs to A225547.

A344537 Inverse permutation to A344535.

Original entry on oeis.org

0, 1, 2, 4, 8, 3, 64, 5, 16, 9, 1024, 6, 32768, 65, 10, 32, 2097152, 17, 268435456, 12, 66, 1025, 68719476736, 7, 128, 32769, 18, 68, 35184372088832, 11, 36028797018963968, 33, 1026, 2097153, 72, 20, 73786976294838206464, 268435457, 32770, 13
Offset: 1

Views

Author

Rémy Sigrist, May 23 2021

Keywords

Comments

This sequence is additive.
This sequence establishes a bijection from A225547 to A261195.

Examples

			A344535(42) = 240, so a(240) = 42.
		

Crossrefs

Programs

  • PARI
    a(n) = { my (f=factor(n), v=0); for (k=1, #f~, my (x=primepi(f[k, 1])-1, yy=f[k, 2], y); while (yy, yy-=2^y=valuation(yy, 2); v+=2^(y + (x+y)*(x+y+1)/2))); v }

Formula

a(prime(n)) = A006125(n+1) for any n >= 0.
a(2^2^n) = A036442(n).
A000120(a(n)) = A064547(n).
a(A225546(n)) = A344536(n).
a(n) = A344536(n) iff n belongs to A225547.
Showing 1-10 of 10 results.