A344535 For any number n with binary expansion Sum_{k = 1..m} 2^e_k (where 0 <= e_1 < ... < e_m), a(n) = Product_{k = 1..m} prime(1+A025581(e_k))^2^A002262(e_k) (where prime(k) denotes the k-th prime number).
1, 2, 3, 6, 4, 8, 12, 24, 5, 10, 15, 30, 20, 40, 60, 120, 9, 18, 27, 54, 36, 72, 108, 216, 45, 90, 135, 270, 180, 360, 540, 1080, 16, 32, 48, 96, 64, 128, 192, 384, 80, 160, 240, 480, 320, 640, 960, 1920, 144, 288, 432, 864, 576, 1152, 1728, 3456, 720, 1440
Offset: 0
Examples
For n = 42: - 42 = 2^5 + 2^3 + 2^1, - so we have the following Fermi-Dirac factors p^2^k: 5| X 3| X 2| X ---+------ p/k| 0 1 2 - a(42) = 3^2^0 * 5^2^0 * 2^2^2 = 240.
Comments