cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344536 Inverse permutation to A344534.

Original entry on oeis.org

0, 1, 4, 2, 32, 5, 512, 3, 16, 33, 16384, 6, 1048576, 513, 36, 8, 134217728, 17, 34359738368, 34, 516, 16385, 17592186044416, 7, 256, 1048577, 20, 514, 18014398509481984, 37, 36893488147419103232, 9, 16388, 134217729, 544, 18, 151115727451828646838272
Offset: 1

Views

Author

Rémy Sigrist, May 23 2021

Keywords

Comments

This sequence is additive.
This sequence establishes a bijection from A225547 to A261195.

Examples

			A344534(42) = 320, so a(320) = 42.
		

Crossrefs

Programs

  • PARI
    a(n) = { my (f=factor(n), v=0); for (k=1, #f~, my (x=primepi(f[k,1])-1, yy=f[k,2], y); while (yy, yy-=2^y=valuation(yy,2); v+=2^(x + (x+y)*
    (x+y+1)/2))); v }

Formula

a(prime(n)) = A036442(n).
a(2^2^n) = A006125(n+1) for any n >= 0.
A000120(a(n)) = A064547(n).
a(A225546(n)) = A344537(n).
a(n) = A344537(n) iff n belongs to A225547.

A344535 For any number n with binary expansion Sum_{k = 1..m} 2^e_k (where 0 <= e_1 < ... < e_m), a(n) = Product_{k = 1..m} prime(1+A025581(e_k))^2^A002262(e_k) (where prime(k) denotes the k-th prime number).

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 24, 5, 10, 15, 30, 20, 40, 60, 120, 9, 18, 27, 54, 36, 72, 108, 216, 45, 90, 135, 270, 180, 360, 540, 1080, 16, 32, 48, 96, 64, 128, 192, 384, 80, 160, 240, 480, 320, 640, 960, 1920, 144, 288, 432, 864, 576, 1152, 1728, 3456, 720, 1440
Offset: 0

Views

Author

Rémy Sigrist, May 22 2021

Keywords

Comments

The ones in the binary expansion of n encode the Fermi-Dirac factors of a(n).
The following table gives the rank of the bit corresponding to the Fermi-Dirac factor p^2^k:
...
7| 6
5| 3 7
3| 1 4 8
2| 0 2 5 9
---+--------
p/k| 0 1 2 3 ...
This sequence is a bijection from the nonnegative integers to the positive integers with inverse A344537.
This sequence establishes a bijection from A261195 to A225547.

Examples

			For n = 42:
- 42 = 2^5 + 2^3 + 2^1,
- so we have the following Fermi-Dirac factors p^2^k:
      5| X
      3| X
      2|     X
    ---+------
    p/k| 0 1 2
- a(42) = 3^2^0 * 5^2^0 * 2^2^2 = 240.
		

Crossrefs

Programs

  • PARI
    A002262(n)=n-binomial(round(sqrt(2+2*n)), 2)
    A025581(n)=binomial(1+floor(1/2+sqrt(2+2*n)), 2)-(n+1)
    a(n) = { my (v=1, e); while (n, n-=2^e=valuation(n, 2); v *= prime(1 + A025581(e))^2^A002262(e)); v }

Formula

a(n) = A344534(A344531(n)).
a(n) = A344534(n) iff n belongs to A261195.
A064547(a(n)) = A000120(n).
a(A006125(n)) = prime(n) for any n > 0.
a(A036442(n+1)) = 2^2^n for any n >= 0.
a(m + n) = a(m) * a(n) when m AND n = 0 (where AND denotes the bitwise AND operator).
Showing 1-2 of 2 results.