cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368402 Numbers k such that k and k+1 are both in A268375.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 11, 12, 16, 17, 18, 19, 27, 28, 31, 43, 44, 47, 48, 49, 52, 63, 67, 75, 79, 80, 97, 98, 112, 116, 124, 127, 147, 148, 162, 163, 171, 172, 175, 191, 192, 207, 211, 241, 242, 243, 244, 256, 268, 271, 283, 288, 292, 316, 324, 331, 332, 337, 367
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2023

Keywords

Comments

Analogous to A342028, as A268375 is analogous to A130091.
The Mersenne primes (A000668) are terms.

Crossrefs

Subsequence of A130091, A268375 and A342028.
Subsequences: A000668, A368403, A368404.

Programs

  • Mathematica
    f[e_] := Position[Reverse[IntegerDigits[e, 2]], 1] // Flatten; q[n_] := q[n] = UnsameQ @@ Flatten[f /@ FactorInteger[n][[;; , 2]]]; Select[Range[100], q[#] && q[#+1] &]
  • PARI
    isA268375(n) = {my(e = factor(n)[,2], b = 0); for(i=1, #e, b = bitor(b, e[i])); n == 1 || b == vecsum(e);}
    lista(kmax) = {my(is1 = 0, is2); for(k = 1, kmax, is2 = isA268375(k); if(is1 && is2, print1(k-1, ", ")); is1 = is2);}

A368403 Starts of runs of 3 consecutive integers in A268375.

Original entry on oeis.org

1, 2, 3, 7, 11, 16, 17, 18, 27, 43, 47, 48, 79, 97, 147, 162, 171, 191, 241, 242, 243, 331, 367, 387, 431, 507, 547, 603, 907, 1051, 1249, 1250, 1619, 1871, 2267, 2347, 2523, 2799, 3411, 3643, 3987, 4049, 4050, 4111, 4175, 4203, 4491, 4923, 5119, 5391, 5407, 6091
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2023

Keywords

Comments

Analogous to A342029, as A268375 is analogous to A130091.

Crossrefs

Subsequence of A130091, A268375, A342029 and A368402.
A368404 is a subsequence.

Programs

  • Mathematica
    f[e_] := Position[Reverse[IntegerDigits[e, 2]], 1] // Flatten; q[n_] := UnsameQ @@ Flatten[f /@ FactorInteger[n][[;; , 2]]]; q[0] = False; seq[kmax_] := Module[{m = 3, s = {}, v}, v = q /@ Range[0, m - 1]; Do[v = Join[Rest[v], {q[k]}]; If[And @@ v, AppendTo[s, k - m + 1]], {k, m, kmax}]; s]; seq[6000]
  • PARI
    isA268375(n) = {my(e = factor(n)[,2], b = 0); for(i=1, #e, b = bitor(b, e[i])); n == 1 || b == vecsum(e);}
    lista(kmax) = {my(tri = vector(3, i, isA268375(i)), k = 4); while(k < kmax, if(vecsum(tri) == 3, print1(k-3, ", ")); tri = concat(vecextract(tri, "^1"), isA268375(k)); k++); }
Showing 1-2 of 2 results.