cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A317934 Multiplicative with a(p^n) = 2^A011371(n); denominators for certain "Dirichlet Square Roots" sequences.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 16, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

a(n) is the denominator of certain rational valued sequences f(n), that have been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, dA034444 and A037445.
Many of the same observations as given in A046644 apply also here. Note that A011371 shares with A005187 the property that A011371(x+y) <= A011371(x) + A011371(y), with equivalence attained only when A004198(x,y) = 0, and also the property that A011371(2^(k+1)) = 1 + 2*A011371(2^k).
The following list gives such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n).
Numerators Dirichlet convolution of numerator(n)/a(n) yields
------- -----------
Expansion of Dirichlet g.f. Product_{prime} 1/(1 - 2/p^s)^(1/2) is A046643/A317934. - Vaclav Kotesovec, May 08 2025

Crossrefs

Cf. A317933, A317940, A317941 (numerator-sequences).
Cf. also A046644, A299150, A299152, A317832, A317932, A317926 (for denominator sequences of other similar constructions).

Programs

  • PARI
    A011371(n) = (n - hammingweight(n));
    A317934(n) = factorback(apply(e -> 2^A011371(e),factor(n)[,2]));
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-2*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 07 2025
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, ((1+X)/(1-X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = 2^A317946(n).
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d 1, where b is A034444, A037445 or A046644 for example.
Sum_{k=1..n} A046643(k)/a(k) ~ n * sqrt(A167864*log(n)/(Pi*log(2))) * (1 + (4*(gamma - 1) + 5*log(2) - 4*A347195)/(8*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 08 2025

A318315 The 2-adic valuation of A318314.

Original entry on oeis.org

0, 1, 0, 3, 0, 1, 0, 4, 1, 1, 0, 3, 0, 1, 0, 7, 0, 2, 0, 3, 0, 1, 0, 4, 1, 1, 1, 3, 0, 1, 0, 8, 0, 1, 0, 4, 0, 1, 0, 4, 0, 1, 0, 3, 1, 1, 0, 7, 1, 2, 0, 3, 0, 2, 0, 4, 0, 1, 0, 3, 0, 1, 1, 10, 0, 1, 0, 3, 0, 1, 0, 5, 0, 1, 1, 3, 0, 1, 0, 7, 3, 1, 0, 3, 0, 1, 0, 4, 0, 2, 0, 3, 0, 1, 0, 8, 0, 2, 1, 4, 0, 1, 0, 4, 0
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A007814(A318314(n)).

A318451 The 2-adic valuation of A318450.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 2, 0, 1, 3, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 1, 2, 1, 0, 2, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 1, 3, 3, 2, 1, 1, 4, 2, 1, 2, 1, 1, 2, 1, 1, 4, 0, 2, 2, 1, 1, 2, 2, 1, 3, 1, 1, 4, 1, 2, 2, 1, 1, 7, 1, 1, 2, 2, 1, 2, 1, 1, 4, 2, 1, 2, 1, 2, 1, 1, 3, 4, 3, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A007814(A318450(n)).

A318455 The 2-adic valuation of A318454(n).

Original entry on oeis.org

0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 8, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 10, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 8, 0, 1, 0, 3, 0, 1, 0, 4, 0
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Sum[Mod[d, 2], {d, Divisors[n]}] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]);
    a[n_] := IntegerExponent[Denominator[f[n]], 2];
    Array[a, 105] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    A318455(n) = valuation(A318454(n),2); \\ Needs also program from A318454.

Formula

a(n) = A007814(A318454(n)).
Showing 1-4 of 4 results.