cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318315 The 2-adic valuation of A318314.

Original entry on oeis.org

0, 1, 0, 3, 0, 1, 0, 4, 1, 1, 0, 3, 0, 1, 0, 7, 0, 2, 0, 3, 0, 1, 0, 4, 1, 1, 1, 3, 0, 1, 0, 8, 0, 1, 0, 4, 0, 1, 0, 4, 0, 1, 0, 3, 1, 1, 0, 7, 1, 2, 0, 3, 0, 2, 0, 4, 0, 1, 0, 3, 0, 1, 1, 10, 0, 1, 0, 3, 0, 1, 0, 5, 0, 1, 1, 3, 0, 1, 0, 7, 3, 1, 0, 3, 0, 1, 0, 4, 0, 2, 0, 3, 0, 1, 0, 8, 0, 2, 1, 4, 0, 1, 0, 4, 0
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A007814(A318314(n)).

A318451 The 2-adic valuation of A318450.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 2, 0, 1, 3, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 1, 2, 1, 0, 2, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 1, 3, 3, 2, 1, 1, 4, 2, 1, 2, 1, 1, 2, 1, 1, 4, 0, 2, 2, 1, 1, 2, 2, 1, 3, 1, 1, 4, 1, 2, 2, 1, 1, 7, 1, 1, 2, 2, 1, 2, 1, 1, 4, 2, 1, 2, 1, 2, 1, 1, 3, 4, 3, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A007814(A318450(n)).

A318454 Denominators of the sequence whose Dirichlet convolution with itself yields A001227, number of odd divisors of n.

Original entry on oeis.org

1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 128, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 128, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 1024, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 128, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 2, 1, 8, 1, 2, 1, 16, 1
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Comments

The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".

Crossrefs

Cf. A001227.
Cf. A318453 (numerators), A318455.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Sum[Mod[d, 2], {d, Divisors[n]}] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]);
    Table[f[n] // Denominator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 16384;
    A001227(n) = numdiv(n>>valuation(n, 2)); \\ From A001227
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318453_54 = DirSqrt(vector(up_to, n, A001227(n)));
    A318454(n) = denominator(v318453_54[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A001227(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318455(n).
Sum_{k=1..n} A318453(k) / a(k) ~ n/sqrt(2). - Vaclav Kotesovec, May 09 2025
Showing 1-3 of 3 results.