cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318455 The 2-adic valuation of A318454(n).

Original entry on oeis.org

0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 8, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 10, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 8, 0, 1, 0, 3, 0, 1, 0, 4, 0
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Sum[Mod[d, 2], {d, Divisors[n]}] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]);
    a[n_] := IntegerExponent[Denominator[f[n]], 2];
    Array[a, 105] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    A318455(n) = valuation(A318454(n),2); \\ Needs also program from A318454.

Formula

a(n) = A007814(A318454(n)).

A318314 Denominators of the sequence whose Dirichlet convolution with itself yields A068068, number of odd unitary divisors of n.

Original entry on oeis.org

1, 2, 1, 8, 1, 2, 1, 16, 2, 2, 1, 8, 1, 2, 1, 128, 1, 4, 1, 8, 1, 2, 1, 16, 2, 2, 2, 8, 1, 2, 1, 256, 1, 2, 1, 16, 1, 2, 1, 16, 1, 2, 1, 8, 2, 2, 1, 128, 2, 4, 1, 8, 1, 4, 1, 16, 1, 2, 1, 8, 1, 2, 2, 1024, 1, 2, 1, 8, 1, 2, 1, 32, 1, 2, 2, 8, 1, 2, 1, 128, 8, 2, 1, 8, 1, 2, 1, 16, 1, 4, 1, 8, 1, 2, 1, 256, 1, 4, 2, 16, 1, 2, 1, 16, 1
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Comments

The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".
Note that A318314 differs from A318454 at exactly those n where A001227 differs from A068068, the numbers in A038838. - Antti Karttunen, Sep 07 2018

Crossrefs

Programs

  • Mathematica
    a35[n_] := (1 - (-1)^n)/2;
    a120[n_] := DigitCount[n, 2, 1];
    a[n_] := Product[{p, e} = pe; 2^(((2 - a35[p])*e) - a120[e]), {pe, FactorInteger[n]}];
    a /@ Range[100] (* Jean-François Alcover, Sep 19 2019 *)
  • PARI
    up_to = 16384;
    A068068(n) = (2^omega(n>>valuation(n, 2))); \\ From A068068
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318313_15 = DirSqrt(vector(up_to, n, A068068(n)));
    A318313(n) = numerator(v318313_15[n]);
    A318314(n) = denominator(v318313_15[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A068068(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318315(n).
From Antti Karttunen, Sep 03-07 2018: (Start, conjectured formulas)
a(n) = A006519(n) * A317934(n), thus multiplicative with a(2^e) = 2^A005187(e), a(p^e) = 2^A011371(e) for odd primes p.
Equally, multiplicative with a(p^e) = 2^(((2-A000035(p))*e)-A000120(e)) for all primes p.
(End)

A318453 Numerators of the sequence whose Dirichlet convolution with itself yields A001227, number of odd divisors of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 63, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 231, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 63, 1, 1, 1, 3, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Cf. A001227.
Cf. A318454 (gives the denominators).
Differs from A318313 for the first time at n=81, where a(81) = 1, while A318313(81) = 3.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Sum[Mod[d, 2], {d, Divisors[n]}] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]);
    Table[f[n] // Numerator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 16384;
    A001227(n) = numdiv(n>>valuation(n, 2)); \\ From A001227
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318453_54 = DirSqrt(vector(up_to, n, A001227(n)));
    A318453(n) = numerator(v318453_54[n]);
    A318454(n) = denominator(v318453_54[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001227(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318453(k) / A318454(k) ~ n/sqrt(2). - Vaclav Kotesovec, May 09 2025
Showing 1-3 of 3 results.