cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318315 The 2-adic valuation of A318314.

Original entry on oeis.org

0, 1, 0, 3, 0, 1, 0, 4, 1, 1, 0, 3, 0, 1, 0, 7, 0, 2, 0, 3, 0, 1, 0, 4, 1, 1, 1, 3, 0, 1, 0, 8, 0, 1, 0, 4, 0, 1, 0, 4, 0, 1, 0, 3, 1, 1, 0, 7, 1, 2, 0, 3, 0, 2, 0, 4, 0, 1, 0, 3, 0, 1, 1, 10, 0, 1, 0, 3, 0, 1, 0, 5, 0, 1, 1, 3, 0, 1, 0, 7, 3, 1, 0, 3, 0, 1, 0, 4, 0, 2, 0, 3, 0, 1, 0, 8, 0, 2, 1, 4, 0, 1, 0, 4, 0
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A007814(A318314(n)).

A318450 Denominators of the sequence whose Dirichlet convolution with itself yields A001511, the 2-adic valuation of 2n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 8, 2, 2, 2, 2, 2, 4, 1, 2, 8, 2, 2, 4, 2, 2, 2, 8, 2, 16, 2, 2, 4, 2, 1, 4, 2, 4, 8, 2, 2, 4, 2, 2, 4, 2, 2, 16, 2, 2, 2, 8, 8, 4, 2, 2, 16, 4, 2, 4, 2, 2, 4, 2, 2, 16, 1, 4, 4, 2, 2, 4, 4, 2, 8, 2, 2, 16, 2, 4, 4, 2, 2, 128, 2, 2, 4, 4, 2, 4, 2, 2, 16, 4, 2, 4, 2, 4, 2, 2, 8, 16, 8, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Comments

The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".

Crossrefs

Cf. A001511, A318449 (numerators), A318451.

Programs

  • Mathematica
    a1511[n_] := IntegerExponent[2n, 2];
    f[1] = 1; f[n_] := f[n] = 1/2 (a1511[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
    Table[f[n] // Denominator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 65537;
    A001511(n) = 1+valuation(n,2);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318449_51 = DirSqrt(vector(up_to, n, A001511(n)));
    A318450(n) = denominator(v318449_51[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A001511(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318451(n).

A318455 The 2-adic valuation of A318454(n).

Original entry on oeis.org

0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 8, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 10, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 8, 0, 1, 0, 3, 0, 1, 0, 4, 0
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Sum[Mod[d, 2], {d, Divisors[n]}] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]);
    a[n_] := IntegerExponent[Denominator[f[n]], 2];
    Array[a, 105] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    A318455(n) = valuation(A318454(n),2); \\ Needs also program from A318454.

Formula

a(n) = A007814(A318454(n)).
Showing 1-3 of 3 results.