cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166634 Totally multiplicative sequence with a(p) = 4*(p-1) for prime p.

Original entry on oeis.org

1, 4, 8, 16, 16, 32, 24, 64, 64, 64, 40, 128, 48, 96, 128, 256, 64, 256, 72, 256, 192, 160, 88, 512, 256, 192, 512, 384, 112, 512, 120, 1024, 320, 256, 384, 1024, 144, 288, 384, 1024, 160, 768, 168, 640, 1024, 352, 184, 2048, 576, 1024
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Mathematica
    DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] :=
    DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*4^(PrimeOmega[m]), {m, 1, 100}] (* G. C. Greubel, May 20 2016 *)
    f[p_, e_] := (4*(p-1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = 4*(f[k,1]-1)); factorback(f);} \\ Michel Marcus, May 20 2016

Formula

Multiplicative with a(p^e) = (4*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (4*(p(k)-1))^e(k).
a(n) = A165825(n) * A003958(n) = 4^bigomega(n) * A003958(n) = 4^A001222(n) * A003958(n).

A344683 Dirichlet convolution of the Euler totient function with itself, applied twice.

Original entry on oeis.org

1, 3, 6, 9, 12, 18, 18, 25, 30, 36, 30, 54, 36, 54, 72, 66, 48, 90, 54, 108, 108, 90, 66, 150, 108, 108, 134, 162, 84, 216, 90, 168, 180, 144, 216, 270, 108, 162, 216, 300, 120, 324, 126, 270, 360, 198, 138, 396, 234, 324, 288, 324, 156, 402, 360, 450, 324
Offset: 1

Views

Author

Sebastian Karlsson, Aug 17 2021

Keywords

Comments

Dirichlet convolution of A000010 with A029935.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (1/2)*(p - 1)*p^(e - 3)*(e^2*(p - 1)^2 + 3*e*(p^2 - 1) + 2*(p^2 + p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 17 2021 *)
  • Python
    from sympy import divisors as div, totient as phi
    def D(f, g, n):
        return sum(f(d)*g(n//d) for d in div(n))
    def phi_o_phi(n):
        return D(phi, phi, n)
    def a(n):
        return D(phi, phi_o_phi, n)

Formula

Dirichlet g.f.: zeta(s - 1)^3 / zeta(s)^3.
Multiplicative with a(p^e) = (1/2)*(p-1)*p^(e-3)*(e^2*(p-1)^2 + 3*e*(p^2-1) + 2*(p^2 + p + 1)).
Sum_{k=1..n} a(k) ~ 27*n^2/Pi^10 * (2*Pi^4*log(n)^2 - 2*Pi^4*log(n)*(1 + 6*log(2) - 72*(1/12 - zeta'(-1)) + 6*log(Pi)) + Pi^4*(1 + 6*gamma*(2*gamma - 1) - 12*sg1) + 864*zeta'(2)^2 - 36*Pi^2*((6*gamma - 1)*zeta'(2) + zeta''(2))), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jun 24 2022

A166635 Totally multiplicative sequence with a(p) = 5*(p-1) for prime p.

Original entry on oeis.org

1, 5, 10, 25, 20, 50, 30, 125, 100, 100, 50, 250, 60, 150, 200, 625, 80, 500, 90, 500, 300, 250, 110, 1250, 400, 300, 1000, 750, 140, 1000, 150, 3125, 500, 400, 600, 2500, 180, 450, 600, 2500, 200, 1500, 210, 1250, 2000, 550, 230, 6250, 900, 2000
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Mathematica
    DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] :=
    DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*5^(PrimeOmega[m]), {m, 1, 100}] (* G. C. Greubel, May 20 2016 *)
    a[p_?PrimeQ] := a[p] = 5*(p-1); a[1] = 1; a[n_] := ({pp, ee} = FactorInteger[n] // Transpose; Times @@ ((a /@ pp)^ee)); Array[a, 50] (* Jean-François Alcover, Feb 02 2018 *)

Formula

Multiplicative with a(p^e) = (5*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (5*(p(k)-1))^e(k).
a(n) = A165826(n) * A003958(n) = 5^bigomega(n) * A003958(n) = 5^A001222(n) * A003958(n).
Showing 1-3 of 3 results.