cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A349692 Dirichlet convolution of the gcd-sum function (A018804) with itself.

Original entry on oeis.org

1, 6, 10, 25, 18, 60, 26, 88, 67, 108, 42, 250, 50, 156, 180, 280, 66, 402, 74, 450, 260, 252, 90, 880, 211, 300, 372, 650, 114, 1080, 122, 832, 420, 396, 468, 1675, 146, 444, 500, 1584, 162, 1560, 170, 1050, 1206, 540, 186, 2800, 435, 1266, 660, 1250, 210, 2232, 756
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    A018804[n_] := Sum[GCD[n,k], {k, 1, n}]; a[n_] := Sum[A018804[d] A018804[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 55}]
    f[p_, e_] := (e + 1)*p^(e - 2)*((e + 2)*(e + 3)*p^2 - 2*e*(e + 2)*p + e*(e - 1))/6; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 55] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A029935(n) = sumdiv(n, d, eulerphi(d)*eulerphi(n/d)); \\ From A029935.
    A349692(n) = sumdiv(n, d, A029935(n/d)*d*numdiv(d)); \\ Antti Karttunen, Nov 25 2021

Formula

Dirichlet g.f.: zeta(s-1)^4 / zeta(s)^2.
a(n) = Sum_{d|n} A018804(d) * A018804(n/d).
a(n) = Sum_{d|n} A029935(d) * A038040(n/d).
a(n) = Sum_{d|n} A344683(d) * A000203(n/d).
Multiplicative with a(p^e) = (e+1) * p^(e-2) * ((e+2)*(e+3)*p^2 - 2*e*(e+2)*p + e*(e-1))/6. - Amiram Eldar, Nov 25 2021
Showing 1-1 of 1 results.