cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A061142 Replace each prime factor of n with 2: a(n) = 2^bigomega(n), where bigomega = A001222, number of prime factors counted with multiplicity.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 8, 4, 4, 2, 8, 2, 4, 4, 16, 2, 8, 2, 8, 4, 4, 2, 16, 4, 4, 8, 8, 2, 8, 2, 32, 4, 4, 4, 16, 2, 4, 4, 16, 2, 8, 2, 8, 8, 4, 2, 32, 4, 8, 4, 8, 2, 16, 4, 16, 4, 4, 2, 16, 2, 4, 8, 64, 4, 8, 2, 8, 4, 8, 2, 32, 2, 4, 8, 8, 4, 8, 2, 32, 16, 4, 2, 16, 4, 4, 4, 16, 2, 16, 4, 8, 4, 4, 4
Offset: 1

Views

Author

Henry Bottomley, May 29 2001

Keywords

Comments

The inverse Möbius transform of A162510. - R. J. Mathar, Feb 09 2011

Examples

			a(100)=16 since 100=2*2*5*5 and so a(100)=2*2*2*2.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(2^bigomega(n),n=1..95);
  • Mathematica
    Table[2^PrimeOmega[n], {n, 1, 95}] (* Jean-François Alcover, Jun 08 2013 *)
  • PARI
    a(n)=direuler(p=1,n,1/(1-2*X))[n] /* Ralf Stephan, Mar 28 2015 */
    
  • PARI
    a(n) = 2^bigomega(n); \\ Michel Marcus, Aug 08 2017

Formula

a(n) = Sum_{d divides n} 2^(bigomega(d)-omega(d)) = Sum_{d divides n} 2^(A001222(d) - A001221(d)). - Benoit Cloitre, Apr 30 2002
a(n) = A000079(A001222(n)), i.e., a(n)=2^bigomega(n). - Emeric Deutsch, Feb 13 2005
Totally multiplicative with a(p) = 2. - Franklin T. Adams-Watters, Oct 04 2006
Dirichlet g.f.: Product_{p prime} 1/(1-2*p^(-s)). - Ralf Stephan, Mar 28 2015
a(n) = A001316(A156552(n)). - Antti Karttunen, May 29 2017
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} 1/(1 - 1/(p^s - 1)^2). - Vaclav Kotesovec, Mar 14 2023

A167864 Decimal expansion of Selberg-Delange constant Product_{prime p > 2} (1 + 1/(p(p-2))).

Original entry on oeis.org

1, 5, 1, 4, 7, 8, 0, 1, 2, 8, 1, 3, 7, 4, 9, 1, 2, 5, 7, 7, 9, 0, 9, 1, 9, 2, 5, 5, 6, 4, 9, 4, 7, 4, 8, 9, 2, 4, 1, 5, 2, 7, 0, 1, 5, 8, 2, 8, 6, 2, 1, 4, 3, 9, 5, 3, 5, 7, 4, 8, 4, 2, 7, 1, 4, 8, 4, 9, 3, 2, 2, 0, 9, 8, 1, 5, 6, 1, 1, 5, 8, 1, 0, 8, 7, 7, 5, 8, 5, 3, 8, 2, 7, 6, 9, 8, 0, 7, 6, 7, 7, 6, 5, 6, 2
Offset: 1

Views

Author

Jonathan Sondow, Nov 13 2009, Nov 17 2009

Keywords

Comments

Coefficient in formulas for the distribution of integers with a fixed number of prime factors.
Reciprocal of the twin prime constant A005597. See A005597 for links and additional references and comments.
Numerators of partial products are A062271. Denominators are A062270.
An analog for primes of Wallis' product pi/2 = Product_{n >=1} (2n)^2/(2n-1)(2n+1), because A167864 = Product_{prime p>2} (p-1)^2/(p-2)p.
Grosswald (see links) proves that Sum_{k<=x} 2^Omega(k) ~ (1/(8*log(2))) * c * x * (log(x))^2 + O(x * log(x)) where c is this constant. - Amiram Eldar, Jun 06 2020
The asymptotic density of numbers m with A046660(m) = Omega(m) - omega(m) = k is asymptotically ~ c/2^(k+2) as k -> oo, where c is this constant (Rényi, 1955). - Amiram Eldar, Aug 08 2020
Named after the Norwegian mathematician Atle Selberg (1917-2007) and the French mathematician Hubert Delange (1914-2003). - Amiram Eldar, Jun 20 2021

Examples

			Product_{prime p > 2} (1 + 1/(p(p-2))) = 1.5147801281374912577909192556...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 84-93.
  • Atle Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc., Vol. 18, No. 1 (1954), pp. 83-87.
  • Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 206.

Crossrefs

Cf. A005597.
Cf. A001222 (Omega), A046660, A061142 (2^Omega), A069205 (partial sums of 2^Omega).

Programs

  • Mathematica
    s[n_] := (1/n)* N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], 160]; C2 = (175/256)*Product[(Zeta[ n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[ n]), {n, 2, 160}]; RealDigits[1/C2][[1]][[1 ;; 105]] (* Jean-François Alcover, Oct 30 2012, after Pari program in A005597 *)
    $MaxExtraPrecision = 300; digits = 105; terms = 600; P[n_] := PrimeZetaP[n] - 1/2^n; LR = Join[{0, 0}, LinearRecurrence[{3, -2}, {2, 6}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 19 2016 *)
  • PARI
    prodeulerrat((1 + 1/(p*(p-2))),,3) \\ Hugo Pfoertner, Aug 08 2020

Formula

Equals 1/A005597.
Equals Product_{prime p>2} (p-1)^2/(p-2)p = (2^2/1*3)(4^2/3*5)(6^2/5*7)(10^2/9*11) ....

A347195 Decimal expansion of Sum_{primes p > 2} log(p) / ((p-2)*(p-1)).

Original entry on oeis.org

8, 5, 9, 3, 9, 2, 2, 3, 1, 3, 5, 8, 5, 6, 8, 6, 8, 9, 7, 1, 8, 7, 1, 4, 5, 1, 4, 1, 8, 6, 1, 2, 3, 2, 8, 1, 7, 6, 9, 9, 6, 0, 9, 1, 7, 6, 9, 8, 3, 1, 1, 2, 1, 1, 4, 7, 4, 1, 6, 3, 4, 2, 6, 5, 9, 0, 3, 8, 3, 9, 6, 4, 9, 4, 1, 6, 7, 1, 1, 1, 3, 1, 3, 6, 3, 1, 7, 2, 1, 4, 3, 9, 6, 2, 2, 2, 8, 6, 5, 8, 3, 8, 0, 6, 6, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2021

Keywords

Comments

Constant is related to the asymptotics of A069205.

Examples

			0.8593922313585686897187145141861232817699609176983112114741634265903839649...
		

Crossrefs

Programs

  • Mathematica
    ratfun = 1/((p-2)*(p-1)); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*(Zeta'[power]/Zeta[power] + Log[2]/(2^power - 1)) /. sol; ratfun = konfun /. sol, {power, 2, 25}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 2, m}] + zetas, 110]], {m, 2000, 10000, 2000}]

A350961 a(n) = Sum_{k=1..n} 3^Omega(k).

Original entry on oeis.org

1, 4, 7, 16, 19, 28, 31, 58, 67, 76, 79, 106, 109, 118, 127, 208, 211, 238, 241, 268, 277, 286, 289, 370, 379, 388, 415, 442, 445, 472, 475, 718, 727, 736, 745, 826, 829, 838, 847, 928, 931, 958, 961, 988, 1015, 1024, 1027, 1270, 1279, 1306, 1315, 1342, 1345, 1426, 1435, 1516, 1525, 1534, 1537, 1618
Offset: 1

Views

Author

N. J. A. Sloane, Feb 06 2022

Keywords

References

  • Tenenbaum, G. (2015). Introduction to analytic and probabilistic number theory, 3rd ed., American Mathematical Soc. See page 59.

Crossrefs

Cf. A001222 (Omega), A069205, A069212. Partial sums of A165824.

Programs

  • Mathematica
    Accumulate[3^PrimeOmega[Range[100]]] (* Vaclav Kotesovec, Feb 16 2022 *)
  • Python
    from sympy.ntheory.factor_ import primeomega
    def A350961(n): return sum(3**primeomega(m) for m in range(1,n+1)) # Chai Wah Wu, Sep 07 2023

A335073 a(n) = Sum_{k=1..n} 2^(bigomega(k) - omega(k)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 12, 14, 15, 16, 18, 19, 20, 21, 29, 30, 32, 33, 35, 36, 37, 38, 42, 44, 45, 49, 51, 52, 53, 54, 70, 71, 72, 73, 77, 78, 79, 80, 84, 85, 86, 87, 89, 91, 92, 93, 101, 103, 105, 106, 108, 109, 113, 114, 118, 119, 120, 121, 123, 124, 125, 127
Offset: 1

Views

Author

Daniel Suteu, May 22 2020

Keywords

Comments

Partial sums of A162510.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; uses numtheory; `if`(n<1, 0,
          2^(bigomega(n)-nops(factorset(n)))+a(n-1))
        end:
    seq(a(n), n=1..70);  # Alois P. Heinz, May 22 2020
  • Mathematica
    Accumulate[Table[2^(PrimeOmega[n]-PrimeNu[n]),{n,70}]] (* Harvey P. Dale, Aug 14 2020 *)
  • PARI
    a(n) = sum(k=1, n, 2^(bigomega(k) - omega(k)));

Formula

a(n) = Sum_{k=1..n} A008683(k) * A069205(floor(n/k)).
a(n) = Sum_{k=1..n} A061142(k) * A002321(floor(n/k)).

A166632 Totally multiplicative sequence with a(p) = 2*(p-1) for prime p.

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 12, 8, 16, 16, 20, 16, 24, 24, 32, 16, 32, 32, 36, 32, 48, 40, 44, 32, 64, 48, 64, 48, 56, 64, 60, 32, 80, 64, 96, 64, 72, 72, 96, 64, 80, 96, 84, 80, 128, 88, 92, 64, 144, 128
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local f;
      mul((2*(f[1]-1))^f[2], f = ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, May 19 2016
  • Mathematica
    DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] := DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*2^(PrimeOmega[m]), {m, 1, 100}](* G. C. Greubel, May 19 2016, based on A003958 *)
    f[p_, e_] := (2*(p-1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - 2*(p-1)*X))[n], ", ")) \\ Vaclav Kotesovec, Mar 08 2023

Formula

Multiplicative with a(p^e) = (2*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(p(k)-1))^e(k).
a(n) = A061142(n) * A003958(n) = 2^bigomega(n) * A003958(n) = 2^A001222(n) * A003958(n).
Dirichlet g.f.: Product_{p prime} 1/(1 - 2*(p-1)*p^(-s)). - Robert Israel, May 19 2016
From Vaclav Kotesovec, Mar 08 2023: (Start)
Dirichlet g.f.: zeta(s-1)^2 * Product_{p prime} (1 - (2 - p^(2-s))/(p^s-2*p+2)).
Let f(s) = Product_{p prime} (1 - (2 - p^(2-s)) / (p^s - 2*p + 2)).
Sum_{k=1..n} a(k) ~ ((2*log(n) + 4*gamma - 1)*f(2) + 2*f'(2)) * n^2/4, where
f(2) = Product_{p prime} (1 - 2/(p^2 - 2*p + 2)) = 0.353804459718477500968617797456682002952375753701841967763205003892191...,
f'(2) = f(2) * Sum_{p prime} 2*log(p) / ((p-1) * (p^2 - 2*p + 2)) = 0.350193097012820163529213089258238034020398107720137317340667886409682...
and gamma is the Euler-Mascheroni constant A001620. (End)

A375286 a(n) = f(1) + f(2) + ... + f(n), where f(n) = (-2)^Omega(n) = A165872(n).

Original entry on oeis.org

1, -1, -3, 1, -1, 3, 1, -7, -3, 1, -1, -9, -11, -7, -3, 13, 11, 3, 1, -7, -3, 1, -1, 15, 19, 23, 15, 7, 5, -3, -5, -37, -33, -29, -25, -9, -11, -7, -3, 13, 11, 3, 1, -7, -15, -11, -13, -45, -41, -49, -45, -53, -55, -39, -35, -19, -15, -11, -13, 3, 1, 5, -3, 61
Offset: 1

Views

Author

Keywords

Crossrefs

Partial sums of A165872.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 0,
          a(n-1)+(-2)^numtheory[bigomega](n))
        end:
    seq(a(n), n=1..64);  # Alois P. Heinz, Apr 25 2025
  • PARI
    s=0; vector(60,n,s+=(-2)^bigomega(n))

Formula

Johnston, Leong, & Tudzi prove that |a(n)| < 2260n. Sun conjectures that |a(n)| < n for n >= 3078. Mossinghoff & Trudgian verify this to 2.5 * 10^14.
Because of powers of two, |a(n)| >= n/2 infinitely often.

A378482 Decimal expansion of 1/(8*log(2)*A005597), where A005597 is the twin prime constant C_2.

Original entry on oeis.org

2, 7, 3, 1, 7, 0, 7, 2, 2, 3, 6, 2, 6, 3, 8, 3, 9, 7, 4, 7, 1, 0, 6, 6, 0, 1, 4, 3, 1, 6, 5, 5, 1, 5, 1, 4, 7, 9, 1, 2, 9, 7, 3, 6, 9, 3, 6, 5, 7, 0, 1, 6, 3, 9, 5, 1, 3, 9, 8, 5, 3, 5, 0, 7, 4, 3, 0, 0, 3, 2, 4, 9, 1, 7, 5, 0, 5, 5, 9, 8, 5, 8, 3, 2, 6, 8, 4, 7, 8, 6, 6, 5, 4, 6, 5, 0, 5, 8, 8, 6
Offset: 0

Views

Author

Stefano Spezia, Nov 28 2024

Keywords

Examples

			0.27317072236263839747106601431655151479129736936570...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.5.1, p. 111.
  • Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 53, exercise 5 (in the third edition 2015, p. 59, exercise 57).

Crossrefs

Programs

  • PARI
    1/(8*log(2)*prodeulerrat(1-1/(p-1)^2, 1, 3)) \\ Amiram Eldar, Nov 29 2024

Formula

Equals lim_{n->oo} (1/(n*log(n)^2)) * A069205(n). - Amiram Eldar, Feb 15 2025
Showing 1-8 of 8 results.