A112937
Logarithmic derivative of A112936 such that a(n)=(1/3)*A112936(n+1) for n>0, where A112936 equals the INVERT transform (with offset) of triple factorials A008544.
Original entry on oeis.org
1, 5, 37, 377, 4981, 81305, 1580797, 35637377, 913115701, 26189790425, 830916198157, 28883617580177, 1091455878504421, 44541746007215945, 1952125704702209917, 91440056107001450177, 4558596081095404198741
Offset: 1
log(1+x + 3*x*[x + 5*x^2 + 37*x^3 + 377*x^4 + 4981*x^5 +...])
= x + 5/2*x^2 + 37/3*x^3 + 377/4*x^4 + 4981/5*x^5 + ...
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+3*x^2*deriv(F)/F); return(n*polcoeff(log(F),n,x))}
A355793
Square table, read by antidiagonals: the g.f. for row n is given recursively by (3*n-1)*x*R(n,x) = 1 + (3*n-4)*x - 1/R(n-1,x) for n >= 1 with the initial value R(0,x) = Sum_{k >= 0} A112936(k+1)*x^k.
Original entry on oeis.org
1, 1, 3, 1, 3, 15, 1, 3, 24, 111, 1, 3, 33, 282, 1131, 1, 3, 42, 507, 4236, 14943, 1, 3, 51, 786, 9609, 76548, 243915, 1, 3, 60, 1119, 17736, 212835, 1608864, 4742391, 1, 3, 69, 1506, 29103, 459768, 5350785, 38488152, 106912131, 1, 3, 78, 1947, 44196, 859143, 13333488
Offset: 0
Square array begins
1, 3, 15, 111, 1131, 14943, 243915, 4742391, 106912131, ...
1, 3, 24, 282, 4236, 76548, 1608864, 38488152, 1032125136, ...
1, 3, 33, 507, 9609, 212835, 5350785, 149961675, 4628365305, ...
1, 3, 42, 786, 17736, 459768, 13333488, 425600976, 14791250688, ...
1, 3, 51, 1119, 29103, 859143, 28091463, 1002057591, 38606468343, ...
1, 3, 60, 1506, 44196, 1458588, 52917360, 2080630776, 87823112496, ...
1, 3, 69, 1947, 63501, 2311563, 91949469, 3943276347, 180679742061, ...
1, 3, 78, 2442, 87504, 3477360, 150259200, 6970190160, 344116224960, ...
-
T := (n,k) -> coeff(series(hypergeom([n+2/3, 1], [], 3*x)/ hypergeom([n-1/3, 1], [], 3*x), x, 21), x, k):
# display as a sequence
seq(seq(T(n-k,k), k = 0..n), n = 0..10);
# display as a square array
seq(print(seq(T(n,k), k = 0..10)), n = 0..10);
A112934
a(0) = 1; a(n+1) = Sum_{k=0..n} a(k)*A001147(n-k), where A001147 = double factorial numbers.
Original entry on oeis.org
1, 1, 2, 6, 26, 158, 1282, 13158, 163354, 2374078, 39456386, 737125446, 15279024026, 347786765150, 8621313613954, 231139787526822, 6663177374810266, 205503866668090750, 6751565903597571842
Offset: 0
A(x) = 1 + x + 2*x^2 + 6*x^3 + 26*x^4 + 158*x^5 + 1282*x^6 + ...
1/A(x) = 1 - x - x^2 - 3*x^3 - 15*x^4 - 105*x^5 - ... - A001147(n)*x^(n+1) - ...
a(4) = a(3+1) = Sum_{k=0..3} a(k)*A001147(3-k) = a(0)*5!! + a(1)*3!! + a(2)*1 + a(3)*1 = 1*15 + 1*3 + 2*1 + 6*1 = 26. - _Michael B. Porter_, Jul 22 2016
-
a_list := proc(len) local A, n; A[0] := 1; A[1] := 1;
for n from 2 to len-1 do A[n] := (2*n-1)*A[n-1] - add(A[j]*A[n-j], j=1..n-1) od;
convert(A, list) end: a_list(19); # Peter Luschny, May 22 2017
# Alternative:
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (n - k) * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..18); # Peter Luschny, Oct 02 2023
-
a[0] = 1; a[n_] := a[n] = Sum[a[k]*(2n - 2k - 3)!!, {k, 0, n - 1}]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Oct 12 2005 *)
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+2*x^2*deriv(F)/F); return(polcoeff(F,n,x))}
-
{a(n) = local(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 1) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
A112938
INVERT transform (with offset) of quadruple factorials (A008545), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^4]/A(x)^4.
Original entry on oeis.org
1, 1, 4, 28, 292, 4156, 75844, 1694812, 44835172, 1369657468, 47422855300, 1834403141788, 78377228106148, 3664969183404220, 186134931067171012, 10201887125268108508, 600142156513333537252, 37713563573426417361148
Offset: 0
A(x) = 1 + x + 4*x^2 + 28*x^3 + 292*x^4 + 4156*x^5 + ...
1/A(x) = 1 - x - 3*x^2 - 21*x^3 - 231*x^4 -... -A008545(n)*x^(n+1)-...
-
CoefficientList[Series[1/(1 + 1/4*ExpIntegralE[3/4,-1/(4*x)]/E^(1/(4*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+4*x^2*deriv(F)/F); return(polcoeff(F,n,x))}
A112940
INVERT transform (with offset) of quintuple factorials (A008546), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^5]/A(x)^5.
Original entry on oeis.org
1, 1, 5, 45, 605, 11045, 257005, 7288245, 243870205, 9401560645, 410141056205, 19966451812245, 1072718714991005, 63033317759267045, 4020725747388170605, 276661592017425909045, 20424931173615717011005
Offset: 0
A(x) = 1 + x + 5*x^2 + 45*x^3 + 605*x^4 + 11045*x^5 +...
1/A(x) = 1 - x - 4*x^2 - 36*x^3 - 504*x^4 -... -A008546(n)*x^(n+1) -...
-
CoefficientList[Series[1/(1 + 1/5*ExpIntegralE[4/5, -1/(5*x)]/E^(1/(5*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+5*x^2*deriv(F)/F); return(polcoeff(F,n,x))}
A112942
INVERT transform (with offset) of sextuple factorials (A008543), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^6]/A(x)^6.
Original entry on oeis.org
1, 1, 6, 66, 1086, 24186, 684006, 23506626, 951191646, 44281107066, 2330310876486, 136747268000706, 8851092668419326, 626304664252772346, 48092138192079689766, 3982448437177141451586, 353746119265020213643806
Offset: 0
A(x) = 1 + x + 6*x^2 + 66*x^3 + 1086*x^4 + 24186*x^5 +...
1/A(x) = 1 - x - 5*x^2 - 55*x^3 - 935*x^4 -... -A008543(n)*x^(n+1)-...
-
CoefficientList[Series[1/(1 + 1/6*ExpIntegralE[5/6,-1/(6*x)]/E^(1/(6*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+6*x^2*deriv(F)/F); return(polcoeff(F,n,x))}
A112935
Logarithmic derivative of A112934 such that a(n)=(1/2)*A112934(n+1) for n>0, where A112934 equals the INVERT transform of double factorials A001147.
Original entry on oeis.org
1, 3, 13, 79, 641, 6579, 81677, 1187039, 19728193, 368562723, 7639512013, 173893382575, 4310656806977, 115569893763411, 3331588687405133, 102751933334045375, 3375782951798785921, 117693183724386637635
Offset: 1
log(1+x + 2*x*[x + 3*x^2 + 13*x^3 + 79*x^4 + 641*x^5 +...])
= x + 3/2*x^2 + 13/3*x^3 + 79/4*x^4 + 641/5*x^5 +...
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+2*x^2*deriv(F)/F); return(n*polcoeff(log(F),n,x))}
A112939
Logarithmic derivative of A112938 such that a(n)=(1/4)*A112938(n+1) for n>0, where A112938 equals the INVERT transform (with offset) of quadruple factorials A008545.
Original entry on oeis.org
1, 7, 73, 1039, 18961, 423703, 11208793, 342414367, 11855713825, 458600785447, 19594307026537, 916242295851055, 46533732766792753, 2550471781317027127, 150035539128333384313, 9428390893356604340287, 630318228814408172573761
Offset: 1
log(1+x + 4*x*[x + 7*x^2 + 73*x^3 + 1039*x^4 + 18961*x^5 +...])
= x + 7/2*x^2 + 73/3*x^3 + 1039/4*x^4 + 18961/5*x^5 + ...
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+4*x^2*deriv(F)/F); return(n*polcoeff(log(F),n,x))}
A112941
Logarithmic derivative of A112940 such that a(n)=(1/5)*A112940(n+1) for n>0, where A112940 equals the INVERT transform (with offset) of quintuple factorials A008546.
Original entry on oeis.org
1, 9, 121, 2209, 51401, 1457649, 48774041, 1880312129, 82028211241, 3993290362449, 214543742998201, 12606663551853409, 804145149477634121, 55332318403485181809, 4084986234723143402201, 322064057582671115832449
Offset: 1
log(1+x + 5*x*[x + 9*x^2 + 121*x^3 + 2209*x^4 + 51401*x^5 +...])
= x + 9/2*x^2 + 121/3*x^3 + 2209/4*x^4 + 51401/5*x^5 + ...
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+5*x^2*deriv(F)/F); return(n*polcoeff(log(F),n,x))}
A112943
Logarithmic derivative of A112942 such that a(n)=(1/6)*A112942(n+1) for n>0, where A112942 equals the INVERT transform (with offset) of sextuple factorials A008543.
Original entry on oeis.org
1, 11, 181, 4031, 114001, 3917771, 158531941, 7380184511, 388385146081, 22791211333451, 1475182111403221, 104384110708795391, 8015356365346614961, 663741406196190241931, 58957686544170035607301
Offset: 1
log(1+x + 6*x*[x + 11*x^2 + 181*x^3 + 4031*x^4 + 114001*x^5 +...])
= x + 11/2*x^2 + 181/3*x^3 + 4031/4*x^4 + 114001/5*x^5 + ...
-
{a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+6*x^2*deriv(F)/F); return(n*polcoeff(log(F),n,x))}
Showing 1-10 of 16 results.
Comments