A181984 INVERT transform of A028310.
1, 2, 5, 12, 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, 128801, 299426, 696081, 1618192, 3761840, 8745217, 20330163, 47261895, 109870576, 255418101, 593775046, 1380359512, 3208946545, 7459895657, 17342153393, 40315615410, 93722435101
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 5*x^2 + 12*x^3 + 28*x^4 + 65*x^5 + 151*x^6 + 351*x^7 + 816*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Miklos Bona, Rebecca Smith, Pattern avoidance in permutations and their squares, arXiv:1901.00026 [math.CO], 2018. See H(z), Ex. 4.1.
- Index entries for linear recurrences with constant coefficients, signature (3, -2, 1).
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+x^2)/(1-3*x+2*x^2-x^3))); // G. C. Greubel, Aug 12 2018 -
Mathematica
CoefficientList[Series[(1-x+x^2)/(1-3*x+2*x^2-x^3), {x, 0, 50}], x] (* G. C. Greubel, Aug 12 2018 *)
-
PARI
{a(n) = if( n<0, n = -1-n; polcoeff( (1 - x + x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^n), n))}
-
PARI
x='x+O('x^50); Vec((1-x+x^2)/(1-3*x+2*x^2-x^3)) \\ G. C. Greubel, Aug 12 2018
Formula
G.f.: (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3).
G.f.: 1 / (1 - 2*x / (1 - x / (2 + x / (1 - 2*x / (1 + x))))).
a(n) = 3*a(n-1) + 2*a(n-2) - a(n-3).
a(n) satisfies 1 = f(a(n-2), a(n-1), a(n)) where f(u, v, w) = u^3 - 5*v^3 + w^3 + u*v * (7*v -4*u) + u*w * (3*u + 2*w) + v*w * (11*v - 6*w) - 9*u*v*w.
a(n) = A000931(3*n + 6). - Michael Somos, Sep 18 2012
Comments