A220073 Mirror of the triangle A130517.
1, 1, 2, 2, 1, 3, 3, 1, 2, 4, 4, 2, 1, 3, 5, 5, 3, 1, 2, 4, 6, 6, 4, 2, 1, 3, 5, 7, 7, 5, 3, 1, 2, 4, 6, 8, 8, 6, 4, 2, 1, 3, 5, 7, 9, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 11, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 12, 12, 10, 8, 6, 4, 2
Offset: 1
Examples
From _Boris Putievskiy_, Jan 15 2013: (Start) The start of the sequence as table: 1..1..2..3..4..5..6..7... 2..1..1..2..3..4..5..6... 3..2..1..1..2..3..4..5... 4..3..2..1..1..2..3..4... 5..4..3..2..1..1..2..3... 6..5..4..3..2..1..1..2... 7..6..5..4..3..2..1..1... 8..7..6..5..4..3..2..1... . . . The start of the sequence as triangle array read by rows: 1, 1, 2, 2, 1, 3, 3, 1, 2, 4, 4, 2, 1, 3, 5, 5, 3, 1, 2, 4, 6, 6, 4, 2, 1, 3, 5, 7, 7, 5, 3, 1, 2, 4, 6, 8, . . . Row number r contains r numbers: r-1, r-3,...,1,...r-2,r. (End)
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Crossrefs
Programs
-
Haskell
a220073 n k = a220073_tabl !! (n-1) !! (k-1) a220073_row n = a220073_tabl !! (n-1) a220073_tabl = map reverse a130517_tabl
-
Mathematica
max = 13; row[n_] := Join[Range[n, 1, -1], Range[max - n + 1]]; T = Array[row, max]; Table[T[[n - k + 1, k]], {n, 1, max}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 11 2017 *)
Formula
T(1,1)=1, for n>1: T(n,k)=T(n-1,n-k+1), 1<=k
From Boris Putievskiy, Jan 15 2013: (Start)
For the general case
a(n) = |(t+1)^2 - 2n| + m*floor((t^2+3t+2-2n)/(t+1)),
where t = floor((-1+sqrt(8*n-7))/2).
For m = 2
a(n) = |(t+1)^2 - 2n| + floor((t^2+3t+2-2n)/(t+1)),
where t=floor((-1+sqrt(8*n-7))/2). (End)
A220053 Partial sums in rows of A130517, triangle read by rows.
1, 2, 3, 3, 4, 6, 4, 6, 7, 10, 5, 8, 9, 11, 15, 6, 10, 12, 13, 16, 21, 7, 12, 15, 16, 18, 22, 28, 8, 14, 18, 20, 21, 24, 29, 36, 9, 16, 21, 24, 25, 27, 31, 37, 45, 10, 18, 24, 28, 30, 31, 34, 39, 46, 55, 11, 20, 27, 32, 35, 36, 38, 42, 48, 56, 66, 12, 22, 30
Offset: 1
Examples
1; 2, 3; 3, 4, 6; 4, 6, 7, 10; 5, 8, 9, 11, 15; 6, 10, 12, 13, 16, 21; 7, 12, 15, 16, 18, 22, 28; 8, 14, 18, 20, 21, 24, 29, 36; 9, 16, 21, 24, 25, 27, 31, 37, 45; 10, 18, 24, 28, 30, 31, 34, 39, 46, 55; 11, 20, 27, 32, 35, 36, 38, 42, 48, 56, 66;
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..7260
Crossrefs
Programs
-
Haskell
a220053 n k = a220053_tabl !! (n-1) !! (k-1) a220053_row n = a220053_tabl !! (n-1) a220053_tabl = map (scanl1 (+)) a130517_tabl -- Reinhard Zumkeller, Dec 03 2012
-
Mathematica
T[n_, 1] := n; T[n_, n_] := n-1; T[n_, k_] := Abs[2k - n - If[2k <= n+1, 2, 1]]; row[n_] := Table[T[n, k], {k, 1, n}] // Accumulate; Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Sep 23 2021 *)
Formula
T(n,k) = Sum_{i=1..k} A130517(n, i).
A375303 a(n) is the rank of row n of A130517 in a lexicographic permutation of [1, ..., n].
0, 1, 4, 20, 108, 678, 4848, 39264, 355920, 3575640, 39454560, 474501600, 6178566240, 86606881200, 1300352981760, 20821540239360, 354184575816960, 6378546460970880, 121243261343500800, 2425719783585369600, 50955334461183398400, 1121303792572973856000, 25795667534014525593600
Offset: 1
Keywords
A130598 A shell geometric model of the nucleus. The location of the magic numbers. A triangle.
10, 1111, 10, 111111, 11, 1110, 11111110, 1111, 11, 111111, 1111111110, 111111, 11, 1111, 11111111, 111111111110, 11111111, 1111, 11, 111111, 1111111111, 11111111111110, 1111111111, 111111, 11, 1111, 11111111, 111111111111
Offset: 1
Comments
The magic numbers of the atomic nucleus: 2, 8, 20, 28, 50, 82, 126. 0 is the location of a magic number. 10 or 11 is equal to 2 protons (or neutrons). 1110 or 1111 is equal to 2+2 protons (or neutrons). 111111 is equal to 2+2+2 protons (or neutrons)... The 2D model is a triangle and a spiral. The 3D model is a double tetrahedron and a double spiral.
Examples
......|----------------------- h -------------------|..... ......|.....|----------------- g --------------|....|..... ......|.....|.....|----------- f ---------|....|....|..... ......|.....|.....|....|------ d -----|...|....|....|..... ......|.....|.....|....|...|-- p -|...|...|....|....|..... ......|.....|.....|....|...|.. s .|...|...|....|....|..... ......|.....|.....|....|...|......|...|...|....|....|..... ......|.....|.....|....|......10......|...|....|....|..... ......|.....|.....|......1111....10.......|....|....|..... ......|.....|.......111111....11....1110.......|....|..... ......|........11111110..1111....11....111111.......|..... .......1111111110...111111....11....1111...11111111.|..... 111111111110...11111111..1111....11....111111...1111111111 ......|.....|.....|....|...|..|...|...|...|....|....|..... ......|.....|.....|....|...|..|1/2|...|...|....|....|..... ......|.....|.....|....|...|-- 3/2 ---|...|....|....|..... ......|.....|.....|....|------ 5/2 -------|....|....|..... ......|.....|.....|----------- 7/2 ------------|....|..... ......|.....|----------------- 9/2 -----------------|..... ......|---------------------- 11/2 -----------------------
A130556 A model of the atomic nucleus (Shell model of nucleus). A triangle.
1, 11, 1, 111, 1, 11, 1111, 11, 1, 111, 11111, 111, 1, 11, 1111, 111111, 1111, 11, 1, 111, 11111, 1111111, 11111, 111, 1, 11, 1111, 111111, 11111111, 111111, 1111, 11, 1, 111, 11111, 1111111
Offset: 1
Comments
1 is equal to 2 protons, 11 is equal to 2+2 protons, 111 is equal to 2+2+2 protons...
Repunit numbers represent the subshells.
Examples
A geometric model of the shell structure of nucleus: ...|----------------------.i.----------------------| ...|...|------------------.h.------------------|...| ...|...|...|--------------.g.--------------|...|...| ...|...|...|...|----------.f.----------|...|...|...| ...|...|...|...|...|------.d.------|...|...|...|...| ...|...|...|...|...|...|--.p.--|...|...|...|...|...| ...|...|...|...|...|...|...s...|...|...|...|...|...| ...|...|...|...|...|...|...|...|...|...|...|...|...| ...|...|...|...|...|...|.......|...|...|...|...|...| ...|...|...|...|...|.......1.......|...|...|...|...| ...|...|...|...|......11.......1.......|...|...|...| ...|...|...|......111......1......11.......|...|...| ...|...|.....1111.....11.......1......111......|...| ...|.....11111....111......1......11.....1111......| ....111111...1111.....11.......1......111....11111.... 1111111..11111....111......1......11.....1111...111111 ...................................................... ...|...|...|...|...|...|...|...|...|...|...|...|...| ...|...|...|...|...|...|...|1/2|...|...|...|...|...| ...|...|...|...|...|...|----3/2----|...|...|...|...| ...|...|...|...|...|--------5/2--------|...|...|...| ...|...|...|...|------------7/2------------|...|...| ...|...|...|----------------9/2----------------|...| ...|...|-------------------11/2--------------------| ...|----------------------.13/2.--------------------
A130602 A shell geometric model of the atomic nucleus.
11, 1111, 11, 111111, 11, 1111, 11111111, 1111, 11, 111111, 1111111111, 111111, 11, 1111, 11111111, 111111111111, 11111111, 1111, 11, 111111, 1111111111, 11111111111111, 1111111111, 111111, 11, 1111, 11111111, 111111111111
Offset: 1
Keywords
Comments
11 is equal to 2 protons. 1111 is equal 2+2 protons. 111111 is equal 2+2+2 protons...
Repunit numbers represent the subshells.
Examples
See the model in the entry: A130517, A130556.
A162630 Triangle read by rows in which row n lists the number of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.
2, 4, 2, 6, 2, 4, 8, 4, 2, 6, 10, 6, 2, 4, 8, 12, 8, 4, 2, 6, 10, 14, 10, 6, 2, 4, 8, 12, 16, 12, 8, 4, 2, 6, 10, 14, 18, 14, 10, 6, 2, 4, 8, 12, 16, 20, 16, 12, 8, 4, 2, 6, 10, 14, 18, 22, 18, 14, 10, 6, 2, 4, 8, 12, 16, 20, 24, 20, 16, 12, 8, 4, 2
Offset: 1
Comments
The list of the spin-orbit coupling of this version of the nuclear shell model starts: 1s_(1/2), 1p_(3/2), 1p_(1/2), 1d_(5/2), 2s_(1/2), 1d_(3/2), 1f_(7/2), 2p_(3/2), 2p_(1/2), etc. The numerators of the fractions are 1, 3, 1, 5, 1, 3, 7, 3, 1, ... then we add 1 to every numerator, so we have this sequence: 2, 4, 2, 6, 2, 4, 8, 4, 2, ... Other sequences that arise from this sequence are A A130517, A210983, A210984. - Omar E. Pol, Sep 02 2012
Examples
A geometric shell model of the atomic nucleus: +---------------------- i ----------------------+ | +------------------ h ------------------+ | | | +-------------- g --------------+ | | | | | +---------- f ----------+ | | | | | | | +------ d ------+ | | | | | | | | | +-- p --+ | | | | | | | | | | | s | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 | | | | | | | | | 4 2 | | | | | | | 6 2 4 | | | | | 8 4 2 6 | | | 10 6 2 4 8 | 12 8 4 2 6 10 14 10 6 2 4 8 12 | | | | | | | | | | | | | | | | | | | +1/2+ | | | | | | | | | | +--- 3/2 ---+ | | | | | | | | +------- 5/2 -------+ | | | | | | +----------- 7/2 -----------+ | | | | +--------------- 9/2 ---------------+ | | +------------------ 11/2 -------------------+ +---------------------- 13/2 -----------------------
Links
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions, 2012, arXiv:1212.2732 [math.CO], 2012.
Crossrefs
Programs
-
Mathematica
t[n_, 1] := n; t[n_, n_] := n-1; t[n_, k_] := Abs[2k - n - If[2k <= n+1, 2, 1]]; 2 Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2018 *)
Formula
a(n) = 2*A130517(n).
From Boris Putievskiy, Jan 16 2013: (Start)
a(n) = 2*(|2*A000027(n) - A003056(n)^2 - 2*A003056(n) - 3| + floor((2*A000027(n) - A003056(n)^2 - A003056(n))/(A003056(n) + 3))).
a(n) = 2*(|2*n - t*t - 2*t - 3| + floor((2*n - t*t - t)/(t+3))) where t = floor((-1 + sqrt(8*n-7))/2). (End)
Extensions
Corrected by Omar E. Pol, Jul 13 2009
More terms from Omar E. Pol, Jul 14 2012
New name from Omar E. Pol, Sep 02 2012
A212121 Triangle read by rows in which row n lists the number of pairs of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.
1, 2, 1, 3, 1, 2, 4, 2, 3, 1, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 7, 5, 3, 6, 4, 1, 2, 8
Offset: 1
Comments
What defines this sequence? (This appears to be some sort of permutation of A130517 by shifting columns down or upwards in some randomized way.) - R. J. Mathar, Jul 22 2012
Examples
Illustration of initial terms: two views of a three-dimensional shell model of nucleus. . .|-------------------------- j --------------------------| .| | .| |---------------------- i ----------------------| | .| | | | .| | |------------------ h ------------------| | | .| | | | | | .| | | |-------------- g --------------| | | | .| | | | | | | | .| | | | |---------- f ----------| | | | | .| | | | | | | | | | .| | | | | |------ d ------| | | | | | .| | | | | | | | | | | | .| | | | | | |-- p --| | | | | | | .| | | | | | | | | | | | | | .| | | | | | | s | | | | | | | .| | | | | | | | | | | | | | | .| | | | | | | 1 | | | | | | | .| | | | | | 2 | | | | | | | | .| | | | | | | | 1 | | | | | | .| | | | | 3 | | | | | | | | | .| | | | | | | 1 | | | | | | | .| | | | | | | | | 2 | | | | | .| | | | 4 | | | | | | | | | | .| | | | | | 2 | | | | | | | | .| | | | | | | | | | 3 | | | | .| | | | | | | | 1 | | | | | | .| | | 5 | | | | | | | | | | | .| | | | | | | | | | | 4 | | | .| | | | | 3 | | | | | | | | | .| | | | | | | | | 2 | | | | | .| | | | | | | 1 | | | | | | | .| | 6 | | | | | | | | | | | | .| | | | | | | | | | | | 5 | | .| | | | 4 | | | | | | | | | | .| | | | | | | | | | 3 | | | | .| | | | | | 2 | | | | | | | | .| | | | | | | | 1 | | | | | | .| 7 | | | | | | | | | | | | | .| | | 5 | | | | | | | | | | | .| | | | | 3 | | | | | | | | | .| | | | | | | | | | | | | 6 | .| | | | | | | | | | | 4 | | | .| | | | | | | 1 | | | | | | | .| | | | | | | | | 2 | | | | | .8 | | | | | | | | | | | | | | .| | | | | | | | | | | | | | | .| | | | | | | |1/2| | | | | | | .| | | | | | | | | | | | | .| | | | | | |----3/2----| | | | | | .| | | | | | | | | | | .| | | | | |--------5/2--------| | | | | .| | | | | | | | | .| | | | |------------7/2------------| | | | .| | | | | | | .| | | |----------------9/2---------------- | | .| | | | | .| | |-------------------11/2--------------------| | .| | | .| |-----------------------13/2------------------------| .| .|---------------------------15/2------------------------- . .......................................................... . .|-------------------------- j --------------------------| .| | .* |---------------------- i ----------------------| | .| | | | .| * |------------------ h ------------------| | * .| | | | | | .* | * |-------------- f --------------| | * | .| | | | | | | | .| * | * |---------- e ----------| | * | * .| | | | | | | | | | .* | * | * |------ d ------| | * | * | .| | | | | | | | | | | | .| * | * | * |-- p --| | * | * | * .| | | | | | | | | | | | | | .* | * | * | * s | * | * | * | .| | | | | | | | | | | | | | | .| * | * | * | * * | * | * | * .| | | | | | | | | | | | | | | .* | * | * | * |1/2| * | * | * | .| | | | | | | | | | | | | .| * | * | * |----3/2----| * | * | * .| | | | | | | | | | | .* | * | * |--------5/2--------| * | * | .| | | | | | | | | .| * | * |------------7/2------------| * | * .| | | | | | | .* | * |----------------9/2----------------| * | .| | | | | .| * |-------------------11/2--------------------| * .| | | .* |-----------------------13/2------------------------| .| .|---------------------------15/2------------------------- . Written as an irregular triangle in which row n represents the n-th shell of nucleus. Note that row 4 has only one term. Triangle begins: 1; 2, 1; 3, 1, 2; 4; 2, 3, 1, 5; 4, 3, 2, 1, 6; 5, 4, 3, 2, 1, 7; 5, 3, 6, 4, 1, 2, 8; ...
Formula
a(n) = A212122(n)/2.
A212122 Triangle read by rows in which row n lists the number of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.
2, 4, 2, 6, 2, 4, 8, 4, 6, 2, 10, 8, 6, 4, 2, 12, 10, 8, 6, 4, 2, 14, 10, 6, 12, 8, 2, 4, 16
Offset: 1
Comments
First differs from A213362 at a(12).
The list of the spin-orbit coupling of this version of the nuclear shell model starts: 1s_(1/2), 1p_(3/2), 1p_(1/2), 1d_(5/2), 2s_(1/2), 1d_(3/2), 1f_(7/2), 2p_(3/2), 1f_(5/2), 2p_(1/2), 1g_(9/2), 1g_(7/2), 2d_(5/2), 2d_(3/2), etc. (see link section). The numerators of the fractions are 1, 3, 1, 5, 1, 3, 7, 3, 5, 1, 9, 7, 5, 3,... then we add 1 to every numerator, so we have this sequence: 2, 4, 2, 6, 2, 4, 8, 4, 6, 2, 10, 8, 6, 4,... Other sequences that arise from this sequence are A212121, A212123, A212124. - Omar E. Pol, Sep 02 2012
Examples
Illustration of initial terms: two views of a three-dimensional shell model of nucleus. |-------------------------- j --------------------------| | | | |---------------------- i ----------------------| | | | | | | | |------------------ h ------------------| | | | | | | | | | | | |-------------- g --------------| | | | | | | | | | | | | | | | |---------- f ----------| | | | | | | | | | | | | | | | | | | | |------ d ------| | | | | | | | | | | | | | | | | | | | | | | | |-- p --| | | | | | | | | | | | | | | | | | | | | | | | | | | | s | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | 6 | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | 4 | | | | | | | | | 8 | | | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | | | | | 6 | | | | | | | | | | | | 2 | | | | | | | | | 10 | | | | | | | | | | | | | | | | | | | | | | 8 | | | | | | | | 6 | | | | | | | | | | | | | | | | | | 4 | | | | | | | | | | | | 2 | | | | | | | | | 12 | | | | | | | | | | | | | | | | | | | | | | | | 10 | | | | | | 8 | | | | | | | | | | | | | | | | | | | | 6 | | | | | | | | | | 4 | | | | | | | | | | | | | | | | 2 | | | | | | | 14 | | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | | | | | | | | | 12 | | | | | | | | | | | | 8 | | | | | | | | | | 2 | | | | | | | | | | | | | | | | 4 | | | | | 16 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |1/2| | | | | | | | | | | | | | | | | | | | | | | | | | |----3/2----| | | | | | | | | | | | | | | | | | | | | | |--------5/2--------| | | | | | | | | | | | | | | | | | |------------7/2------------| | | | | | | | | | | | | | |----------------9/2----------------| | | | | | | | | | |-------------------11/2--------------------| | | | | | |-----------------------13/2------------------------| | |---------------------------15/2------------------------- . .......................................................... . |-------------------------- j --------------------------| * | * |---------------------- i ----------------------| | | * | * | * |------------------ h ------------------| | * * | * | * | * | * |-------------- f --------------| | * | | * | * | * | * | * | * |---------- e ----------| | * | * * | * | * | * | * | * | * | * |------ d ------| | * | * | | * | * | * | * | * | * | * | * | * |-- p --| | * | * | * * | * | * | * | * | * | * | * | * | * | * s | * | * | * | | * | * | * | * * | * | * | * | * | * | * | * * | * | * | * * | * | * | * | | * | * | * | * | * | * | * |1/2| * | * | * | | * | * | * | | * | * | * | * | * | * |----3/2----| * | * | * * | * | * | | * | * | * | * | * |--------5/2--------| * | * | | * | * | | * | * | * | * |------------7/2------------| * | * * | * | | * | * | * |----------------9/2----------------| * | | * | | * | * |-------------------11/2--------------------| * * | | * |-----------------------13/2------------------------| | |---------------------------15/2------------------------- . Written as an irregular triangle in which row n represents the n-th shell of nucleus. Note that row 4 has only one term. Triangle begins: 2; 4, 2; 6, 2, 4; 8; 4, 6, 2, 10; 8, 6, 4, 2, 12; 10, 8, 6, 4, 2, 14; 10, 6, 12, 8, 2, 4, 16; ...
References
- M. Goeppert Mayer and J. Hans D. Jensen, Elementary Theory of Nuclear Shell Structure, J. Wiley and Sons, Inc. (1955).
Links
- HyperPhysics, G.S.U., Shell Model of Nucleus
- Library of Halexandria, Nuclear shell model, Table 1.
Crossrefs
Formula
a(n) = 2*A212121(n).
A162522 First differences of magic numbers A018226.
6, 12, 8, 22, 32, 44
Offset: 1
Comments
Sequence related to atomic nuclei.
Comments