cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A220073 Mirror of the triangle A130517.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 3, 1, 2, 4, 4, 2, 1, 3, 5, 5, 3, 1, 2, 4, 6, 6, 4, 2, 1, 3, 5, 7, 7, 5, 3, 1, 2, 4, 6, 8, 8, 6, 4, 2, 1, 3, 5, 7, 9, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 11, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 12, 12, 10, 8, 6, 4, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 03 2012

Keywords

Comments

T(n,k) = A130517(n,n-k+1), 1 <= k <= n;
T(n,n) = T(n,1) + 1.
From Boris Putievskiy, Jan 15 2013: (Start)
General case see A187760. Let m be natural number. Table T(n,k) n, k > 0, T(n,k)=n-k+1, if n>=k, T(n,k)=k-n+m-1, if n < k. Table T(n,k) read by antidiagonals. The first column of the table T(n,1) is the sequence of the natural numbers A000027. In all columns with number k (k > 1) the segment with the length of (k-1): {m+k-2, m+k-3, ..., m} shifts the sequence A000027. For m=1 the result is A220073, for m=2 the result is A143182. (End)
First inverse function (numbers of rows) for pairing function A209293. - Boris Putievskiy, Jan 28 2013

Examples

			From _Boris Putievskiy_, Jan 15 2013: (Start)
The start of the sequence as table:
1..1..2..3..4..5..6..7...
2..1..1..2..3..4..5..6...
3..2..1..1..2..3..4..5...
4..3..2..1..1..2..3..4...
5..4..3..2..1..1..2..3...
6..5..4..3..2..1..1..2...
7..6..5..4..3..2..1..1...
8..7..6..5..4..3..2..1...
. . .
The start of the sequence as triangle array read by rows:
1,
1, 2,
2, 1, 3,
3, 1, 2, 4,
4, 2, 1, 3, 5,
5, 3, 1, 2, 4, 6,
6, 4, 2, 1, 3, 5, 7,
7, 5, 3, 1, 2, 4, 6, 8,
. . .
Row number r contains r numbers: r-1, r-3,...,1,...r-2,r.
(End)
		

Crossrefs

Cf. A028310 (left edge), A000027 (right edge), A000012 (central terms), A000217 (row sums), A220075 (partial sums in rows), A002260, A000027, A143182, A187760, A209293.

Programs

  • Haskell
    a220073 n k = a220073_tabl !! (n-1) !! (k-1)
    a220073_row n = a220073_tabl !! (n-1)
    a220073_tabl = map reverse a130517_tabl
  • Mathematica
    max = 13;
    row[n_] := Join[Range[n, 1, -1], Range[max - n + 1]];
    T = Array[row, max];
    Table[T[[n - k + 1, k]], {n, 1, max}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 11 2017 *)

Formula

T(1,1)=1, for n>1: T(n,k)=T(n-1,n-k+1), 1<=k
From Boris Putievskiy, Jan 15 2013: (Start)
For the general case
a(n) = |(t+1)^2 - 2n| + m*floor((t^2+3t+2-2n)/(t+1)),
where t = floor((-1+sqrt(8*n-7))/2).
For m = 2
a(n) = |(t+1)^2 - 2n| + floor((t^2+3t+2-2n)/(t+1)),
where t=floor((-1+sqrt(8*n-7))/2). (End)

A220053 Partial sums in rows of A130517, triangle read by rows.

Original entry on oeis.org

1, 2, 3, 3, 4, 6, 4, 6, 7, 10, 5, 8, 9, 11, 15, 6, 10, 12, 13, 16, 21, 7, 12, 15, 16, 18, 22, 28, 8, 14, 18, 20, 21, 24, 29, 36, 9, 16, 21, 24, 25, 27, 31, 37, 45, 10, 18, 24, 28, 30, 31, 34, 39, 46, 55, 11, 20, 27, 32, 35, 36, 38, 42, 48, 56, 66, 12, 22, 30
Offset: 1

Author

Reinhard Zumkeller, Dec 03 2012

Keywords

Examples

			1;
2, 3;
3, 4, 6;
4, 6, 7, 10;
5, 8, 9, 11, 15;
6, 10, 12, 13, 16, 21;
7, 12, 15, 16, 18, 22, 28;
8, 14, 18, 20, 21, 24, 29, 36;
9, 16, 21, 24, 25, 27, 31, 37, 45;
10, 18, 24, 28, 30, 31, 34, 39, 46, 55;
11, 20, 27, 32, 35, 36, 38, 42, 48, 56, 66;
		

Crossrefs

Cf. A000027 (left edge), A000217 (right edge), A000290 (central terms), A002717 (row sums); A220075.

Programs

  • Haskell
    a220053 n k = a220053_tabl !! (n-1) !! (k-1)
    a220053_row n = a220053_tabl !! (n-1)
    a220053_tabl = map (scanl1 (+)) a130517_tabl
    -- Reinhard Zumkeller, Dec 03 2012
  • Mathematica
    T[n_, 1] := n;
    T[n_, n_] := n-1;
    T[n_, k_] := Abs[2k - n - If[2k <= n+1, 2, 1]];
    row[n_] := Table[T[n, k], {k, 1, n}] // Accumulate;
    Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Sep 23 2021 *)

Formula

T(n,k) = Sum_{i=1..k} A130517(n, i).

A375303 a(n) is the rank of row n of A130517 in a lexicographic permutation of [1, ..., n].

Original entry on oeis.org

0, 1, 4, 20, 108, 678, 4848, 39264, 355920, 3575640, 39454560, 474501600, 6178566240, 86606881200, 1300352981760, 20821540239360, 354184575816960, 6378546460970880, 121243261343500800, 2425719783585369600, 50955334461183398400, 1121303792572973856000, 25795667534014525593600
Offset: 1

Author

Hugo Pfoertner, Aug 26 2024

Keywords

Crossrefs

Programs

  • PARI
    \\ uses functions a130517_row from A130517 and rank from A375302.
    a(n) = rank(a130517_row(n))

A130598 A shell geometric model of the nucleus. The location of the magic numbers. A triangle.

Original entry on oeis.org

10, 1111, 10, 111111, 11, 1110, 11111110, 1111, 11, 111111, 1111111110, 111111, 11, 1111, 11111111, 111111111110, 11111111, 1111, 11, 111111, 1111111111, 11111111111110, 1111111111, 111111, 11, 1111, 11111111, 111111111111
Offset: 1

Author

Omar E. Pol, Aug 10 2007

Keywords

Comments

The magic numbers of the atomic nucleus: 2, 8, 20, 28, 50, 82, 126. 0 is the location of a magic number. 10 or 11 is equal to 2 protons (or neutrons). 1110 or 1111 is equal to 2+2 protons (or neutrons). 111111 is equal to 2+2+2 protons (or neutrons)... The 2D model is a triangle and a spiral. The 3D model is a double tetrahedron and a double spiral.

Examples

			......|----------------------- h -------------------|.....
......|.....|----------------- g --------------|....|.....
......|.....|.....|----------- f ---------|....|....|.....
......|.....|.....|....|------ d -----|...|....|....|.....
......|.....|.....|....|...|-- p -|...|...|....|....|.....
......|.....|.....|....|...|.. s .|...|...|....|....|.....
......|.....|.....|....|...|......|...|...|....|....|.....
......|.....|.....|....|......10......|...|....|....|.....
......|.....|.....|......1111....10.......|....|....|.....
......|.....|.......111111....11....1110.......|....|.....
......|........11111110..1111....11....111111.......|.....
.......1111111110...111111....11....1111...11111111.|.....
111111111110...11111111..1111....11....111111...1111111111
......|.....|.....|....|...|..|...|...|...|....|....|.....
......|.....|.....|....|...|..|1/2|...|...|....|....|.....
......|.....|.....|....|...|-- 3/2 ---|...|....|....|.....
......|.....|.....|....|------ 5/2 -------|....|....|.....
......|.....|.....|----------- 7/2 ------------|....|.....
......|.....|----------------- 9/2 -----------------|.....
......|---------------------- 11/2 -----------------------
		

Crossrefs

A130556 A model of the atomic nucleus (Shell model of nucleus). A triangle.

Original entry on oeis.org

1, 11, 1, 111, 1, 11, 1111, 11, 1, 111, 11111, 111, 1, 11, 1111, 111111, 1111, 11, 1, 111, 11111, 1111111, 11111, 111, 1, 11, 1111, 111111, 11111111, 111111, 1111, 11, 1, 111, 11111, 1111111
Offset: 1

Author

Omar E. Pol, Aug 09 2007, Aug 12 2007

Keywords

Comments

1 is equal to 2 protons, 11 is equal to 2+2 protons, 111 is equal to 2+2+2 protons...
Repunit numbers represent the subshells.

Examples

			A geometric model of the shell structure of nucleus:
...|----------------------.i.----------------------|
...|...|------------------.h.------------------|...|
...|...|...|--------------.g.--------------|...|...|
...|...|...|...|----------.f.----------|...|...|...|
...|...|...|...|...|------.d.------|...|...|...|...|
...|...|...|...|...|...|--.p.--|...|...|...|...|...|
...|...|...|...|...|...|...s...|...|...|...|...|...|
...|...|...|...|...|...|...|...|...|...|...|...|...|
...|...|...|...|...|...|.......|...|...|...|...|...|
...|...|...|...|...|.......1.......|...|...|...|...|
...|...|...|...|......11.......1.......|...|...|...|
...|...|...|......111......1......11.......|...|...|
...|...|.....1111.....11.......1......111......|...|
...|.....11111....111......1......11.....1111......|
....111111...1111.....11.......1......111....11111....
1111111..11111....111......1......11.....1111...111111
......................................................
...|...|...|...|...|...|...|...|...|...|...|...|...|
...|...|...|...|...|...|...|1/2|...|...|...|...|...|
...|...|...|...|...|...|----3/2----|...|...|...|...|
...|...|...|...|...|--------5/2--------|...|...|...|
...|...|...|...|------------7/2------------|...|...|
...|...|...|----------------9/2----------------|...|
...|...|-------------------11/2--------------------|
...|----------------------.13/2.--------------------
		

Crossrefs

A130602 A shell geometric model of the atomic nucleus.

Original entry on oeis.org

11, 1111, 11, 111111, 11, 1111, 11111111, 1111, 11, 111111, 1111111111, 111111, 11, 1111, 11111111, 111111111111, 11111111, 1111, 11, 111111, 1111111111, 11111111111111, 1111111111, 111111, 11, 1111, 11111111, 111111111111
Offset: 1

Author

Omar E. Pol, Aug 10 2007, Aug 12 2007

Keywords

Comments

11 is equal to 2 protons. 1111 is equal 2+2 protons. 111111 is equal 2+2+2 protons...
Repunit numbers represent the subshells.

Examples

			See the model in the entry: A130517, A130556.
		

Crossrefs

A162630 Triangle read by rows in which row n lists the number of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.

Original entry on oeis.org

2, 4, 2, 6, 2, 4, 8, 4, 2, 6, 10, 6, 2, 4, 8, 12, 8, 4, 2, 6, 10, 14, 10, 6, 2, 4, 8, 12, 16, 12, 8, 4, 2, 6, 10, 14, 18, 14, 10, 6, 2, 4, 8, 12, 16, 20, 16, 12, 8, 4, 2, 6, 10, 14, 18, 22, 18, 14, 10, 6, 2, 4, 8, 12, 16, 20, 24, 20, 16, 12, 8, 4, 2
Offset: 1

Author

Omar E. Pol, Jul 10 2009

Keywords

Comments

The list of the spin-orbit coupling of this version of the nuclear shell model starts: 1s_(1/2), 1p_(3/2), 1p_(1/2), 1d_(5/2), 2s_(1/2), 1d_(3/2), 1f_(7/2), 2p_(3/2), 2p_(1/2), etc. The numerators of the fractions are 1, 3, 1, 5, 1, 3, 7, 3, 1, ... then we add 1 to every numerator, so we have this sequence: 2, 4, 2, 6, 2, 4, 8, 4, 2, ... Other sequences that arise from this sequence are A A130517, A210983, A210984. - Omar E. Pol, Sep 02 2012

Examples

			A geometric shell model of the atomic nucleus:
   +---------------------- i ----------------------+
   |   +------------------ h ------------------+   |
   |   |   +-------------- g --------------+   |   |
   |   |   |   +---------- f ----------+   |   |   |
   |   |   |   |   +------ d ------+   |   |   |   |
   |   |   |   |   |   +-- p --+   |   |   |   |   |
   |   |   |   |   |   |   s   |   |   |   |   |   |
   |   |   |   |   |   |   |   |   |   |   |   |   |
   |   |   |   |   |   |       |   |   |   |   |   |
   |   |   |   |   |       2       |   |   |   |   |
   |   |   |   |       4       2       |   |   |   |
   |   |   |       6       2       4       |   |   |
   |   |       8       4       2       6       |   |
   |      10       6       2       4       8       |
      12       8       4       2       6      10
  14      10       6       2       4       8      12
   |   |   |   |   |   |   |   |   |   |   |   |   |
   |   |   |   |   |   |   +1/2+   |   |   |   |   |
   |   |   |   |   |   +--- 3/2 ---+   |   |   |   |
   |   |   |   |   +------- 5/2 -------+   |   |   |
   |   |   |   +----------- 7/2 -----------+   |   |
   |   |   +--------------- 9/2 ---------------+   |
   |   +------------------ 11/2 -------------------+
   +---------------------- 13/2 -----------------------
		

Crossrefs

Programs

  • Mathematica
    t[n_, 1] := n; t[n_, n_] := n-1;
    t[n_, k_] := Abs[2k - n - If[2k <= n+1, 2, 1]];
    2 Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2018 *)

Formula

a(n) = 2*A130517(n).
From Boris Putievskiy, Jan 16 2013: (Start)
a(n) = 2*(|2*A000027(n) - A003056(n)^2 - 2*A003056(n) - 3| + floor((2*A000027(n) - A003056(n)^2 - A003056(n))/(A003056(n) + 3))).
a(n) = 2*(|2*n - t*t - 2*t - 3| + floor((2*n - t*t - t)/(t+3))) where t = floor((-1 + sqrt(8*n-7))/2). (End)

Extensions

Corrected by Omar E. Pol, Jul 13 2009
More terms from Omar E. Pol, Jul 14 2012
New name from Omar E. Pol, Sep 02 2012

A212121 Triangle read by rows in which row n lists the number of pairs of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 4, 2, 3, 1, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 7, 5, 3, 6, 4, 1, 2, 8
Offset: 1

Author

Omar E. Pol, Jun 03 2012

Keywords

Comments

For another version see A213361. First differs from A213361 at a(12).
What defines this sequence? (This appears to be some sort of permutation of A130517 by shifting columns down or upwards in some randomized way.) - R. J. Mathar, Jul 22 2012

Examples

			Illustration of initial terms: two views of a three-dimensional shell model of nucleus.
.
.|-------------------------- j --------------------------|
.|                                                       |
.|   |---------------------- i ----------------------|   |
.|   |                                               |   |
.|   |   |------------------ h ------------------|   |   |
.|   |   |                                       |   |   |
.|   |   |   |-------------- g --------------|   |   |   |
.|   |   |   |                               |   |   |   |
.|   |   |   |   |---------- f ----------|   |   |   |   |
.|   |   |   |   |                       |   |   |   |   |
.|   |   |   |   |   |------ d ------|   |   |   |   |   |
.|   |   |   |   |   |               |   |   |   |   |   |
.|   |   |   |   |   |   |-- p --|   |   |   |   |   |   |
.|   |   |   |   |   |   |       |   |   |   |   |   |   |
.|   |   |   |   |   |   |   s   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   1   |   |   |   |   |   |   |
.|   |   |   |   |   |   2   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   1   |   |   |   |   |   |
.|   |   |   |   |   3   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   1   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   2   |   |   |   |   |
.|   |   |   |   4   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   2   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   3   |   |   |   |
.|   |   |   |   |   |   |   |   1   |   |   |   |   |   |
.|   |   |   5   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   |   4   |   |   |
.|   |   |   |   |   3   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   2   |   |   |   |   |
.|   |   |   |   |   |   |   1   |   |   |   |   |   |   |
.|   |   6   |   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   |   |   5   |   |
.|   |   |   |   4   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   3   |   |   |   |
.|   |   |   |   |   |   2   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   1   |   |   |   |   |   |
.|   7   |   |   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   5   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   3   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   |   |   |   6   |
.|   |   |   |   |   |   |   |   |   |   |   4   |   |   |
.|   |   |   |   |   |   |   1   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   2   |   |   |   |   |
.8   |   |   |   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
.|   |   |   |   |   |   |   |1/2|   |   |   |   |   |   |
.|   |   |   |   |   |   |           |   |   |   |   |   |
.|   |   |   |   |   |   |----3/2----|   |   |   |   |   |
.|   |   |   |   |   |                   |   |   |   |   |
.|   |   |   |   |   |--------5/2--------|   |   |   |   |
.|   |   |   |   |                           |   |   |   |
.|   |   |   |   |------------7/2------------|   |   |   |
.|   |   |   |                                   |   |   |
.|   |   |   |----------------9/2----------------    |   |
.|   |   |                                           |   |
.|   |   |-------------------11/2--------------------|   |
.|   |                                                   |
.|   |-----------------------13/2------------------------|
.|
.|---------------------------15/2-------------------------
.
..........................................................
.
.|-------------------------- j --------------------------|
.|                                                       |
.*   |---------------------- i ----------------------|   |
.|   |                                               |   |
.|   *   |------------------ h ------------------|   |   *
.|   |   |                                       |   |   |
.*   |   *   |-------------- f --------------|   |   *   |
.|   |   |   |                               |   |   |   |
.|   *   |   *   |---------- e ----------|   |   *   |   *
.|   |   |   |   |                       |   |   |   |   |
.*   |   *   |   *   |------ d ------|   |   *   |   *   |
.|   |   |   |   |   |               |   |   |   |   |   |
.|   *   |   *   |   *   |-- p --|   |   *   |   *   |   *
.|   |   |   |   |   |   |       |   |   |   |   |   |   |
.*   |   *   |   *   |   *   s   |   *   |   *   |   *   |
.|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
.|   *   |   *   |   *   |   *   *   |   *   |   *   |   *
.|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
.*   |   *   |   *   |   *   |1/2|   *   |   *   |   *   |
.|   |   |   |   |   |   |           |   |   |   |   |   |
.|   *   |   *   |   *   |----3/2----|   *   |   *   |   *
.|   |   |   |   |   |                   |   |   |   |   |
.*   |   *   |   *   |--------5/2--------|   *   |   *   |
.|   |   |   |   |                           |   |   |   |
.|   *   |   *   |------------7/2------------|   *   |   *
.|   |   |   |                                   |   |   |
.*   |   *   |----------------9/2----------------|   *   |
.|   |   |                                           |   |
.|   *   |-------------------11/2--------------------|   *
.|   |                                                   |
.*   |-----------------------13/2------------------------|
.|
.|---------------------------15/2-------------------------
.
Written as an irregular triangle in which row n represents the n-th shell of nucleus. Note that row 4 has only one term. Triangle begins:
1;
2, 1;
3, 1, 2;
4;
2, 3, 1, 5;
4, 3, 2, 1, 6;
5, 4, 3, 2, 1, 7;
5, 3, 6, 4, 1, 2, 8;
...
		

Crossrefs

Partial sums give A212123.

Formula

a(n) = A212122(n)/2.

A212122 Triangle read by rows in which row n lists the number of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.

Original entry on oeis.org

2, 4, 2, 6, 2, 4, 8, 4, 6, 2, 10, 8, 6, 4, 2, 12, 10, 8, 6, 4, 2, 14, 10, 6, 12, 8, 2, 4, 16
Offset: 1

Author

Omar E. Pol, Jun 03 2012

Keywords

Comments

First differs from A213362 at a(12).
The list of the spin-orbit coupling of this version of the nuclear shell model starts: 1s_(1/2), 1p_(3/2), 1p_(1/2), 1d_(5/2), 2s_(1/2), 1d_(3/2), 1f_(7/2), 2p_(3/2), 1f_(5/2), 2p_(1/2), 1g_(9/2), 1g_(7/2), 2d_(5/2), 2d_(3/2), etc. (see link section). The numerators of the fractions are 1, 3, 1, 5, 1, 3, 7, 3, 5, 1, 9, 7, 5, 3,... then we add 1 to every numerator, so we have this sequence: 2, 4, 2, 6, 2, 4, 8, 4, 6, 2, 10, 8, 6, 4,... Other sequences that arise from this sequence are A212121, A212123, A212124. - Omar E. Pol, Sep 02 2012

Examples

			Illustration of initial terms: two views of a three-dimensional shell model of nucleus.
|-------------------------- j --------------------------|
|                                                       |
|   |---------------------- i ----------------------|   |
|   |                                               |   |
|   |   |------------------ h ------------------|   |   |
|   |   |                                       |   |   |
|   |   |   |-------------- g --------------|   |   |   |
|   |   |   |                               |   |   |   |
|   |   |   |   |---------- f ----------|   |   |   |   |
|   |   |   |   |                       |   |   |   |   |
|   |   |   |   |   |------ d ------|   |   |   |   |   |
|   |   |   |   |   |               |   |   |   |   |   |
|   |   |   |   |   |   |-- p --|   |   |   |   |   |   |
|   |   |   |   |   |   |       |   |   |   |   |   |   |
|   |   |   |   |   |   |   s   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   2   |   |   |   |   |   |   |
|   |   |   |   |   |   4   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   2   |   |   |   |   |   |
|   |   |   |   |   6   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   2   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   4   |   |   |   |   |
|   |   |   |   8   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   4   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   6   |   |   |   |
|   |   |   |   |   |   |   |   2   |   |   |   |   |   |
|   |   |  10   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   8   |   |   |
|   |   |   |   |   6   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   4   |   |   |   |   |
|   |   |   |   |   |   |   2   |   |   |   |   |   |   |
|   |  12   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |  10   |   |
|   |   |   |   8   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   6   |   |   |   |
|   |   |   |   |   |   4   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   2   |   |   |   |   |   |
|  14   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |  10   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   6   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |  12   |
|   |   |   |   |   |   |   |   |   |   |   8   |   |   |
|   |   |   |   |   |   |   2   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   4   |   |   |   |   |
16  |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |1/2|   |   |   |   |   |   |
|   |   |   |   |   |   |           |   |   |   |   |   |
|   |   |   |   |   |   |----3/2----|   |   |   |   |   |
|   |   |   |   |   |                   |   |   |   |   |
|   |   |   |   |   |--------5/2--------|   |   |   |   |
|   |   |   |   |                           |   |   |   |
|   |   |   |   |------------7/2------------|   |   |   |
|   |   |   |                                   |   |   |
|   |   |   |----------------9/2----------------|   |   |
|   |   |                                           |   |
|   |   |-------------------11/2--------------------|   |
|   |                                                   |
|   |-----------------------13/2------------------------|
|
|---------------------------15/2-------------------------
.
..........................................................
.
|-------------------------- j --------------------------|
*                                                       |
*   |---------------------- i ----------------------|   |
|   *                                               |   *
|   *   |------------------ h ------------------|   |   *
*   |   *                                       |   *   |
*   |   *   |-------------- f --------------|   |   *   |
|   *   |   *                               |   *   |   *
|   *   |   *   |---------- e ----------|   |   *   |   *
*   |   *   |   *                       |   *   |   *   |
*   |   *   |   *   |------ d ------|   |   *   |   *   |
|   *   |   *   |   *               |   *   |   *   |   *
|   *   |   *   |   *   |-- p --|   |   *   |   *   |   *
*   |   *   |   *   |   *       |   *   |   *   |   *   |
*   |   *   |   *   |   *   s   |   *   |   *   |   *   |
|   *   |   *   |   *   |   *   *   |   *   |   *   |   *
|   *   |   *   |   *   |   *   *   |   *   |   *   |   *
*   |   *   |   *   |   *   |   |   *   |   *   |   *   |
*   |   *   |   *   |   *   |1/2|   *   |   *   |   *   |
|   *   |   *   |   *   |           |   *   |   *   |   *
|   *   |   *   |   *   |----3/2----|   *   |   *   |   *
*   |   *   |   *   |                   |   *   |   *   |
*   |   *   |   *   |--------5/2--------|   *   |   *   |
|   *   |   *   |                           |   *   |   *
|   *   |   *   |------------7/2------------|   *   |   *
*   |   *   |                                   |   *   |
*   |   *   |----------------9/2----------------|   *   |
|   *   |                                           |   *
|   *   |-------------------11/2--------------------|   *
*   |                                                   |
*   |-----------------------13/2------------------------|
|
|---------------------------15/2-------------------------
.
Written as an irregular triangle in which row n represents the n-th shell of nucleus. Note that row 4 has only one term. Triangle begins:
2;
4,   2;
6,   2,  4;
8;
4,   6,  2, 10;
8,   6,  4,  2, 12;
10,  8,  6,  4,  2, 14;
10,  6, 12,  8,  2,  4, 16;
...
		

References

  • M. Goeppert Mayer and J. Hans D. Jensen, Elementary Theory of Nuclear Shell Structure, J. Wiley and Sons, Inc. (1955).

Crossrefs

Row sums give A210842. Partial sums give A212124.
Other versions are A162630, A212012, A213362, A213372.

Formula

a(n) = 2*A212121(n).

A162522 First differences of magic numbers A018226.

Original entry on oeis.org

6, 12, 8, 22, 32, 44
Offset: 1

Author

Omar E. Pol, Jul 06 2009

Keywords

Comments

Sequence related to atomic nuclei.
Showing 1-10 of 28 results. Next