cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A130517 Triangle read by rows: row n counts down from n in steps of 2, then counts up the remaining elements in the set {1,2,...,n}, again in steps of 2.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 4, 2, 1, 3, 5, 3, 1, 2, 4, 6, 4, 2, 1, 3, 5, 7, 5, 3, 1, 2, 4, 6, 8, 6, 4, 2, 1, 3, 5, 7, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 11, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 12, 14, 12, 10
Offset: 1

Views

Author

Omar E. Pol, Aug 08 2007

Keywords

Comments

Triangle read by rows in which row n lists the number of pairs of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.
Row n lists a permutation of the first n positive integers.
If n is odd then row n lists the first (n+1)/2 odd numbers in decreasing order together with the first (n-1)/2 positive even numbers.
If n is even then row n lists the first n/2 even numbers in decreasing order together with the first n/2 odd numbers.
Row n >= 2, with its floor(n/2) last numbers taken as negative, lists the n different eigenvalues (in decreasing order) of the odd graph O(n). The odd graph O(n) has the (n-1)-subsets of a (2*n-1)-set as vertices, with two (n-1)-subsets adjacent if and only if they are disjoint. For example, O(3) is isomorphic to the Petersen graph. - Miquel A. Fiol, Apr 07 2024

Examples

			A geometric model of the atomic nucleus:
......-------------------------------------------------
......|...-----------------------------------------...|
......|...|...---------------------------------...|...|
......|...|...|...-------------------------...|...|...|
......|...|...|...|...-----------------...|...|...|...|
......|...|...|...|...|...---------...|...|...|...|...|
......|...|...|...|...|...|...-...|...|...|...|...|...|
......i...h...g...f...d...p...s...p...d...f...g...h...i
......|...|...|...|...|...|.......|...|...|...|...|...|
......|...|...|...|...|.......1.......|...|...|...|...|
......|...|...|...|.......2.......1.......|...|...|...|
......|...|...|.......3.......1.......2.......|...|...|
......|...|.......4.......2.......1.......3.......|...|
......|.......5.......3.......1.......2.......4.......|
..........6.......4.......2.......1.......3.......5....
......7.......5.......3.......1.......2.......4.......6
.......................................................
...13/2.11/2.9/2.7/2.5/2.3/2.1/2.1/2.3/2.5/2.7/2.9/2.11/2
......|...|...|...|...|...|...|...|...|...|...|...|...|
......|...|...|...|...|...|...-----...|...|...|...|...|
......|...|...|...|...|...-------------...|...|...|...|
......|...|...|...|...---------------------...|...|...|
......|...|...|...-----------------------------...|...|
......|...|...-------------------------------------...|
......|...---------------------------------------------
.
Triangle begins:
   1;
   2, 1;
   3, 1, 2;
   4, 2, 1, 3;
   5, 3, 1, 2, 4;
   6, 4, 2, 1, 3, 5;
   7, 5, 3, 1, 2, 4, 6;
   8, 6, 4, 2, 1, 3, 5, 7;
   9, 7, 5, 3, 1, 2, 4, 6, 8;
  10, 8, 6, 4, 2, 1, 3, 5, 7, 9;
  ...
Also:
                     1;
                   2,  1;
                 3,  1,  2;
               4,  2,  1,  3;
             5,  3,  1,  2,  4;
           6,  4,  2,  1,  3,  5;
         7,  5,  3,  1,  2,  4,  6;
       8,  6,  4,  2,  1,  3,  5,  7;
     9,  7,  5,  3,  1,  2,  4,  6,  8;
  10,  8,  6,  4,  2,  1,  3,  5,  7,  9;
  ...
In this view each column contains the same numbers.
From _Miquel A. Fiol_, Apr 07 2024: (Start)
Eigenvalues of the odd graphs O(n) for n=2..10:
   2, -1;
   3,  1, -2;
   4,  2, -1, -3;
   5,  3,  1, -2, -4;
   6,  4,  2, -1, -3, -5;
   7,  5,  3,  1, -2, -4, -6;
   8,  6,  4,  2, -1, -3, -5, -7;
   9,  7,  5,  3,  1, -2, -4, -6, -8;
  10,  8,  6,  4,  2, -1, -3, -5, -7, -9;
... (End)
		

Crossrefs

Absolute values of A056951. Column 1 is A000027. Row sums are in A000217.
Other versions are A004736, A212121, A213361, A213371.
Cf. A028310 (right edge), A000012 (central terms), A220073 (mirrored), A220053 (partial sums in rows), A375303.

Programs

  • Haskell
    a130517 n k = a130517_tabl !! (n-1) !! (k-1)
    a130517_row n = a130517_tabl !! (n-1)
    a130517_tabl = iterate (\row -> (head row + 1) : reverse row) [1]
    -- Reinhard Zumkeller, Dec 03 2012
    
  • Maple
    A130517 := proc(n,k)
         if k <= (n+1)/2 then
            n-2*(k-1) ;
        else
            1-n+2*(k-1) ;
        end if;
    end proc: # R. J. Mathar, Jul 21 2012
  • Mathematica
    t[n_, 1] := n; t[n_, n_] := n-1; t[n_, k_] := Abs[2*k-n - If[2*k <= n+1, 2, 1]]; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 03 2013, from abs(A056951) *)
  • PARI
    a130517_row(n) = my(v=vector(n), s=1, n1=0, n2=n+1); forstep(k=n, 1,-1, s=-s; if(s>0, n2--; v[n2]=k, n1++; v[n1]=k)); v \\ Hugo Pfoertner, Aug 26 2024

Formula

a(n) = A162630(n)/2. - Omar E. Pol, Sep 02 2012
T(1,1) = 1; for n > 1: T(n,1) = T(n-1,1)+1 and T(n,k) = T(n-1,n-k+1), 1 < k <= n. - Reinhard Zumkeller, Dec 03 2012
From Boris Putievskiy, Jan 16 2013: (Start)
a(n) = |2*A000027(n) - A003056(n)^2 - 2*A003056(n) - 3| + floor((2*A000027(n) - A003056(n)^2 - A003056(n))/(A003056(n)+3)).
a(n) = |2*n - t^2 - 2*t - 3| + floor((2*n - t^2 - t)/(t+3)) where t = floor((-1+sqrt(8*n-7))/2). (End)

A130598 A shell geometric model of the nucleus. The location of the magic numbers. A triangle.

Original entry on oeis.org

10, 1111, 10, 111111, 11, 1110, 11111110, 1111, 11, 111111, 1111111110, 111111, 11, 1111, 11111111, 111111111110, 11111111, 1111, 11, 111111, 1111111111, 11111111111110, 1111111111, 111111, 11, 1111, 11111111, 111111111111
Offset: 1

Views

Author

Omar E. Pol, Aug 10 2007

Keywords

Comments

The magic numbers of the atomic nucleus: 2, 8, 20, 28, 50, 82, 126. 0 is the location of a magic number. 10 or 11 is equal to 2 protons (or neutrons). 1110 or 1111 is equal to 2+2 protons (or neutrons). 111111 is equal to 2+2+2 protons (or neutrons)... The 2D model is a triangle and a spiral. The 3D model is a double tetrahedron and a double spiral.

Examples

			......|----------------------- h -------------------|.....
......|.....|----------------- g --------------|....|.....
......|.....|.....|----------- f ---------|....|....|.....
......|.....|.....|....|------ d -----|...|....|....|.....
......|.....|.....|....|...|-- p -|...|...|....|....|.....
......|.....|.....|....|...|.. s .|...|...|....|....|.....
......|.....|.....|....|...|......|...|...|....|....|.....
......|.....|.....|....|......10......|...|....|....|.....
......|.....|.....|......1111....10.......|....|....|.....
......|.....|.......111111....11....1110.......|....|.....
......|........11111110..1111....11....111111.......|.....
.......1111111110...111111....11....1111...11111111.|.....
111111111110...11111111..1111....11....111111...1111111111
......|.....|.....|....|...|..|...|...|...|....|....|.....
......|.....|.....|....|...|..|1/2|...|...|....|....|.....
......|.....|.....|....|...|-- 3/2 ---|...|....|....|.....
......|.....|.....|....|------ 5/2 -------|....|....|.....
......|.....|.....|----------- 7/2 ------------|....|.....
......|.....|----------------- 9/2 -----------------|.....
......|---------------------- 11/2 -----------------------
		

Crossrefs

A130602 A shell geometric model of the atomic nucleus.

Original entry on oeis.org

11, 1111, 11, 111111, 11, 1111, 11111111, 1111, 11, 111111, 1111111111, 111111, 11, 1111, 11111111, 111111111111, 11111111, 1111, 11, 111111, 1111111111, 11111111111111, 1111111111, 111111, 11, 1111, 11111111, 111111111111
Offset: 1

Views

Author

Omar E. Pol, Aug 10 2007, Aug 12 2007

Keywords

Comments

11 is equal to 2 protons. 1111 is equal 2+2 protons. 111111 is equal 2+2+2 protons...
Repunit numbers represent the subshells.

Examples

			See the model in the entry: A130517, A130556.
		

Crossrefs

A162630 Triangle read by rows in which row n lists the number of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.

Original entry on oeis.org

2, 4, 2, 6, 2, 4, 8, 4, 2, 6, 10, 6, 2, 4, 8, 12, 8, 4, 2, 6, 10, 14, 10, 6, 2, 4, 8, 12, 16, 12, 8, 4, 2, 6, 10, 14, 18, 14, 10, 6, 2, 4, 8, 12, 16, 20, 16, 12, 8, 4, 2, 6, 10, 14, 18, 22, 18, 14, 10, 6, 2, 4, 8, 12, 16, 20, 24, 20, 16, 12, 8, 4, 2
Offset: 1

Views

Author

Omar E. Pol, Jul 10 2009

Keywords

Comments

The list of the spin-orbit coupling of this version of the nuclear shell model starts: 1s_(1/2), 1p_(3/2), 1p_(1/2), 1d_(5/2), 2s_(1/2), 1d_(3/2), 1f_(7/2), 2p_(3/2), 2p_(1/2), etc. The numerators of the fractions are 1, 3, 1, 5, 1, 3, 7, 3, 1, ... then we add 1 to every numerator, so we have this sequence: 2, 4, 2, 6, 2, 4, 8, 4, 2, ... Other sequences that arise from this sequence are A A130517, A210983, A210984. - Omar E. Pol, Sep 02 2012

Examples

			A geometric shell model of the atomic nucleus:
   +---------------------- i ----------------------+
   |   +------------------ h ------------------+   |
   |   |   +-------------- g --------------+   |   |
   |   |   |   +---------- f ----------+   |   |   |
   |   |   |   |   +------ d ------+   |   |   |   |
   |   |   |   |   |   +-- p --+   |   |   |   |   |
   |   |   |   |   |   |   s   |   |   |   |   |   |
   |   |   |   |   |   |   |   |   |   |   |   |   |
   |   |   |   |   |   |       |   |   |   |   |   |
   |   |   |   |   |       2       |   |   |   |   |
   |   |   |   |       4       2       |   |   |   |
   |   |   |       6       2       4       |   |   |
   |   |       8       4       2       6       |   |
   |      10       6       2       4       8       |
      12       8       4       2       6      10
  14      10       6       2       4       8      12
   |   |   |   |   |   |   |   |   |   |   |   |   |
   |   |   |   |   |   |   +1/2+   |   |   |   |   |
   |   |   |   |   |   +--- 3/2 ---+   |   |   |   |
   |   |   |   |   +------- 5/2 -------+   |   |   |
   |   |   |   +----------- 7/2 -----------+   |   |
   |   |   +--------------- 9/2 ---------------+   |
   |   +------------------ 11/2 -------------------+
   +---------------------- 13/2 -----------------------
		

Crossrefs

Programs

  • Mathematica
    t[n_, 1] := n; t[n_, n_] := n-1;
    t[n_, k_] := Abs[2k - n - If[2k <= n+1, 2, 1]];
    2 Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2018 *)

Formula

a(n) = 2*A130517(n).
From Boris Putievskiy, Jan 16 2013: (Start)
a(n) = 2*(|2*A000027(n) - A003056(n)^2 - 2*A003056(n) - 3| + floor((2*A000027(n) - A003056(n)^2 - A003056(n))/(A003056(n) + 3))).
a(n) = 2*(|2*n - t*t - 2*t - 3| + floor((2*n - t*t - t)/(t+3))) where t = floor((-1 + sqrt(8*n-7))/2). (End)

Extensions

Corrected by Omar E. Pol, Jul 13 2009
More terms from Omar E. Pol, Jul 14 2012
New name from Omar E. Pol, Sep 02 2012

A162522 First differences of magic numbers A018226.

Original entry on oeis.org

6, 12, 8, 22, 32, 44
Offset: 1

Views

Author

Omar E. Pol, Jul 06 2009

Keywords

Comments

Sequence related to atomic nuclei.

Crossrefs

A162521 Magic numbers A018226 divided by 2.

Original entry on oeis.org

1, 4, 10, 14, 25, 41, 63
Offset: 1

Views

Author

Omar E. Pol, Jul 06 2009

Keywords

Comments

Sequence related to atomic nuclei.

Crossrefs

A162523 First differences of magic numbers A018226, divided by 2.

Original entry on oeis.org

3, 6, 4, 11, 16, 22
Offset: 1

Views

Author

Omar E. Pol, Jul 06 2009

Keywords

Comments

Sequence related to atomic nucleus.

Crossrefs

Formula

a(n) = A162522(n)/2.

A162524 Partial sums of magic numbers A018226.

Original entry on oeis.org

2, 10, 30, 58, 108, 190, 316
Offset: 1

Views

Author

Omar E. Pol, Jul 06 2009

Keywords

Comments

Sequence related to atomic nuclei.

Crossrefs

Extensions

Edited by Omar E. Pol, Jul 16 2009

A162525 Partial sums of magic numbers A018226, divided by 2.

Original entry on oeis.org

1, 5, 15, 29, 54, 95, 158
Offset: 1

Views

Author

Omar E. Pol, Jul 06 2009

Keywords

Comments

Sequence related to atomic nuclei.

Crossrefs

Formula

a(n) = A162524(n)/2.

A162518 Characteristic function of magic numbers A018226: 1 if n is a magic number else 0.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Jul 07 2009

Keywords

Comments

Sequence related to atomic nuclei.

Crossrefs

Programs

Extensions

Data section extended up to a(126) by Antti Karttunen, Dec 24 2018
Showing 1-10 of 11 results. Next