cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A018226 Magic numbers of nucleons: nuclei with one of these numbers of either protons or neutrons are more stable against nuclear decay.

Original entry on oeis.org

2, 8, 20, 28, 50, 82, 126
Offset: 1

Views

Author

John Raithel (raithel(AT)rahul.net)

Keywords

Comments

In the shell model for the nucleus, magic numbers are the numbers of either protons or neutrons at which a shell is filled.
First seven positive terms of A162626. - Omar E. Pol, Jul 07 2009
Steppenbeck: "The results of the experiment indicate that 54Ca's first excited state lies at a relatively high energy, which is characteristic of a large nuclear shell gap, thus indicating that N = 34 in 54Ca is a new magic number, as predicted theoretically by the University of Tokyo group in 2001. By conducting a more detailed comparison to nuclear theory the researchers were able to show that the N = 34 magic number is equally as significant as some other nuclear shell gaps."

References

  • Dictionary of Science (Simon and Schuster), see the entry for "Magic number".

Crossrefs

Cf. A018227 Number of electrons (which equals number of protons) such that they are arranged into complete shells within the atom.

Formula

If 1 <= n <= 3 then a(n)=n*(n+1)*(n+2)/3, else if 4 <= n <= 7 then a(n)=n(n^2+5)/3. - Omar E. Pol, Jul 07 2009 [This needs to be clarified. - Joerg Arndt, May 03 2011]
From Daniel Forgues, May 03 2011: (Start)
If 1 <= n <= 3 then a(n) = 2 T_n, else
if 4 <= n <= 7 then a(n) = 2 (T_n - t_{n-1}),
where T_n is the n-th tetrahedral number, t_n the n-th triangular number.
G.f.: (2*x*(1 - 6*x^3 + 14*x^4 - 11*x^5 + 3*x^6))/(1 - x)^4, 1 <= n <= 7.
Using those formulas for n >= 0 gives A162626. (End)
a(n) = n*(n^2+5)/3 + (4*n-6)*A171386(n). - Omar E. Pol, Aug 14 2013

A130517 Triangle read by rows: row n counts down from n in steps of 2, then counts up the remaining elements in the set {1,2,...,n}, again in steps of 2.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 4, 2, 1, 3, 5, 3, 1, 2, 4, 6, 4, 2, 1, 3, 5, 7, 5, 3, 1, 2, 4, 6, 8, 6, 4, 2, 1, 3, 5, 7, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 11, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 12, 14, 12, 10
Offset: 1

Views

Author

Omar E. Pol, Aug 08 2007

Keywords

Comments

Triangle read by rows in which row n lists the number of pairs of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.
Row n lists a permutation of the first n positive integers.
If n is odd then row n lists the first (n+1)/2 odd numbers in decreasing order together with the first (n-1)/2 positive even numbers.
If n is even then row n lists the first n/2 even numbers in decreasing order together with the first n/2 odd numbers.
Row n >= 2, with its floor(n/2) last numbers taken as negative, lists the n different eigenvalues (in decreasing order) of the odd graph O(n). The odd graph O(n) has the (n-1)-subsets of a (2*n-1)-set as vertices, with two (n-1)-subsets adjacent if and only if they are disjoint. For example, O(3) is isomorphic to the Petersen graph. - Miquel A. Fiol, Apr 07 2024

Examples

			A geometric model of the atomic nucleus:
......-------------------------------------------------
......|...-----------------------------------------...|
......|...|...---------------------------------...|...|
......|...|...|...-------------------------...|...|...|
......|...|...|...|...-----------------...|...|...|...|
......|...|...|...|...|...---------...|...|...|...|...|
......|...|...|...|...|...|...-...|...|...|...|...|...|
......i...h...g...f...d...p...s...p...d...f...g...h...i
......|...|...|...|...|...|.......|...|...|...|...|...|
......|...|...|...|...|.......1.......|...|...|...|...|
......|...|...|...|.......2.......1.......|...|...|...|
......|...|...|.......3.......1.......2.......|...|...|
......|...|.......4.......2.......1.......3.......|...|
......|.......5.......3.......1.......2.......4.......|
..........6.......4.......2.......1.......3.......5....
......7.......5.......3.......1.......2.......4.......6
.......................................................
...13/2.11/2.9/2.7/2.5/2.3/2.1/2.1/2.3/2.5/2.7/2.9/2.11/2
......|...|...|...|...|...|...|...|...|...|...|...|...|
......|...|...|...|...|...|...-----...|...|...|...|...|
......|...|...|...|...|...-------------...|...|...|...|
......|...|...|...|...---------------------...|...|...|
......|...|...|...-----------------------------...|...|
......|...|...-------------------------------------...|
......|...---------------------------------------------
.
Triangle begins:
   1;
   2, 1;
   3, 1, 2;
   4, 2, 1, 3;
   5, 3, 1, 2, 4;
   6, 4, 2, 1, 3, 5;
   7, 5, 3, 1, 2, 4, 6;
   8, 6, 4, 2, 1, 3, 5, 7;
   9, 7, 5, 3, 1, 2, 4, 6, 8;
  10, 8, 6, 4, 2, 1, 3, 5, 7, 9;
  ...
Also:
                     1;
                   2,  1;
                 3,  1,  2;
               4,  2,  1,  3;
             5,  3,  1,  2,  4;
           6,  4,  2,  1,  3,  5;
         7,  5,  3,  1,  2,  4,  6;
       8,  6,  4,  2,  1,  3,  5,  7;
     9,  7,  5,  3,  1,  2,  4,  6,  8;
  10,  8,  6,  4,  2,  1,  3,  5,  7,  9;
  ...
In this view each column contains the same numbers.
From _Miquel A. Fiol_, Apr 07 2024: (Start)
Eigenvalues of the odd graphs O(n) for n=2..10:
   2, -1;
   3,  1, -2;
   4,  2, -1, -3;
   5,  3,  1, -2, -4;
   6,  4,  2, -1, -3, -5;
   7,  5,  3,  1, -2, -4, -6;
   8,  6,  4,  2, -1, -3, -5, -7;
   9,  7,  5,  3,  1, -2, -4, -6, -8;
  10,  8,  6,  4,  2, -1, -3, -5, -7, -9;
... (End)
		

Crossrefs

Absolute values of A056951. Column 1 is A000027. Row sums are in A000217.
Other versions are A004736, A212121, A213361, A213371.
Cf. A028310 (right edge), A000012 (central terms), A220073 (mirrored), A220053 (partial sums in rows), A375303.

Programs

  • Haskell
    a130517 n k = a130517_tabl !! (n-1) !! (k-1)
    a130517_row n = a130517_tabl !! (n-1)
    a130517_tabl = iterate (\row -> (head row + 1) : reverse row) [1]
    -- Reinhard Zumkeller, Dec 03 2012
    
  • Maple
    A130517 := proc(n,k)
         if k <= (n+1)/2 then
            n-2*(k-1) ;
        else
            1-n+2*(k-1) ;
        end if;
    end proc: # R. J. Mathar, Jul 21 2012
  • Mathematica
    t[n_, 1] := n; t[n_, n_] := n-1; t[n_, k_] := Abs[2*k-n - If[2*k <= n+1, 2, 1]]; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 03 2013, from abs(A056951) *)
  • PARI
    a130517_row(n) = my(v=vector(n), s=1, n1=0, n2=n+1); forstep(k=n, 1,-1, s=-s; if(s>0, n2--; v[n2]=k, n1++; v[n1]=k)); v \\ Hugo Pfoertner, Aug 26 2024

Formula

a(n) = A162630(n)/2. - Omar E. Pol, Sep 02 2012
T(1,1) = 1; for n > 1: T(n,1) = T(n-1,1)+1 and T(n,k) = T(n-1,n-k+1), 1 < k <= n. - Reinhard Zumkeller, Dec 03 2012
From Boris Putievskiy, Jan 16 2013: (Start)
a(n) = |2*A000027(n) - A003056(n)^2 - 2*A003056(n) - 3| + floor((2*A000027(n) - A003056(n)^2 - A003056(n))/(A003056(n)+3)).
a(n) = |2*n - t^2 - 2*t - 3| + floor((2*n - t^2 - t)/(t+3)) where t = floor((-1+sqrt(8*n-7))/2). (End)

A130556 A model of the atomic nucleus (Shell model of nucleus). A triangle.

Original entry on oeis.org

1, 11, 1, 111, 1, 11, 1111, 11, 1, 111, 11111, 111, 1, 11, 1111, 111111, 1111, 11, 1, 111, 11111, 1111111, 11111, 111, 1, 11, 1111, 111111, 11111111, 111111, 1111, 11, 1, 111, 11111, 1111111
Offset: 1

Views

Author

Omar E. Pol, Aug 09 2007, Aug 12 2007

Keywords

Comments

1 is equal to 2 protons, 11 is equal to 2+2 protons, 111 is equal to 2+2+2 protons...
Repunit numbers represent the subshells.

Examples

			A geometric model of the shell structure of nucleus:
...|----------------------.i.----------------------|
...|...|------------------.h.------------------|...|
...|...|...|--------------.g.--------------|...|...|
...|...|...|...|----------.f.----------|...|...|...|
...|...|...|...|...|------.d.------|...|...|...|...|
...|...|...|...|...|...|--.p.--|...|...|...|...|...|
...|...|...|...|...|...|...s...|...|...|...|...|...|
...|...|...|...|...|...|...|...|...|...|...|...|...|
...|...|...|...|...|...|.......|...|...|...|...|...|
...|...|...|...|...|.......1.......|...|...|...|...|
...|...|...|...|......11.......1.......|...|...|...|
...|...|...|......111......1......11.......|...|...|
...|...|.....1111.....11.......1......111......|...|
...|.....11111....111......1......11.....1111......|
....111111...1111.....11.......1......111....11111....
1111111..11111....111......1......11.....1111...111111
......................................................
...|...|...|...|...|...|...|...|...|...|...|...|...|
...|...|...|...|...|...|...|1/2|...|...|...|...|...|
...|...|...|...|...|...|----3/2----|...|...|...|...|
...|...|...|...|...|--------5/2--------|...|...|...|
...|...|...|...|------------7/2------------|...|...|
...|...|...|----------------9/2----------------|...|
...|...|-------------------11/2--------------------|
...|----------------------.13/2.--------------------
		

Crossrefs

A162630 Triangle read by rows in which row n lists the number of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.

Original entry on oeis.org

2, 4, 2, 6, 2, 4, 8, 4, 2, 6, 10, 6, 2, 4, 8, 12, 8, 4, 2, 6, 10, 14, 10, 6, 2, 4, 8, 12, 16, 12, 8, 4, 2, 6, 10, 14, 18, 14, 10, 6, 2, 4, 8, 12, 16, 20, 16, 12, 8, 4, 2, 6, 10, 14, 18, 22, 18, 14, 10, 6, 2, 4, 8, 12, 16, 20, 24, 20, 16, 12, 8, 4, 2
Offset: 1

Views

Author

Omar E. Pol, Jul 10 2009

Keywords

Comments

The list of the spin-orbit coupling of this version of the nuclear shell model starts: 1s_(1/2), 1p_(3/2), 1p_(1/2), 1d_(5/2), 2s_(1/2), 1d_(3/2), 1f_(7/2), 2p_(3/2), 2p_(1/2), etc. The numerators of the fractions are 1, 3, 1, 5, 1, 3, 7, 3, 1, ... then we add 1 to every numerator, so we have this sequence: 2, 4, 2, 6, 2, 4, 8, 4, 2, ... Other sequences that arise from this sequence are A A130517, A210983, A210984. - Omar E. Pol, Sep 02 2012

Examples

			A geometric shell model of the atomic nucleus:
   +---------------------- i ----------------------+
   |   +------------------ h ------------------+   |
   |   |   +-------------- g --------------+   |   |
   |   |   |   +---------- f ----------+   |   |   |
   |   |   |   |   +------ d ------+   |   |   |   |
   |   |   |   |   |   +-- p --+   |   |   |   |   |
   |   |   |   |   |   |   s   |   |   |   |   |   |
   |   |   |   |   |   |   |   |   |   |   |   |   |
   |   |   |   |   |   |       |   |   |   |   |   |
   |   |   |   |   |       2       |   |   |   |   |
   |   |   |   |       4       2       |   |   |   |
   |   |   |       6       2       4       |   |   |
   |   |       8       4       2       6       |   |
   |      10       6       2       4       8       |
      12       8       4       2       6      10
  14      10       6       2       4       8      12
   |   |   |   |   |   |   |   |   |   |   |   |   |
   |   |   |   |   |   |   +1/2+   |   |   |   |   |
   |   |   |   |   |   +--- 3/2 ---+   |   |   |   |
   |   |   |   |   +------- 5/2 -------+   |   |   |
   |   |   |   +----------- 7/2 -----------+   |   |
   |   |   +--------------- 9/2 ---------------+   |
   |   +------------------ 11/2 -------------------+
   +---------------------- 13/2 -----------------------
		

Crossrefs

Programs

  • Mathematica
    t[n_, 1] := n; t[n_, n_] := n-1;
    t[n_, k_] := Abs[2k - n - If[2k <= n+1, 2, 1]];
    2 Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2018 *)

Formula

a(n) = 2*A130517(n).
From Boris Putievskiy, Jan 16 2013: (Start)
a(n) = 2*(|2*A000027(n) - A003056(n)^2 - 2*A003056(n) - 3| + floor((2*A000027(n) - A003056(n)^2 - A003056(n))/(A003056(n) + 3))).
a(n) = 2*(|2*n - t*t - 2*t - 3| + floor((2*n - t*t - t)/(t+3))) where t = floor((-1 + sqrt(8*n-7))/2). (End)

Extensions

Corrected by Omar E. Pol, Jul 13 2009
More terms from Omar E. Pol, Jul 14 2012
New name from Omar E. Pol, Sep 02 2012

A212122 Triangle read by rows in which row n lists the number of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.

Original entry on oeis.org

2, 4, 2, 6, 2, 4, 8, 4, 6, 2, 10, 8, 6, 4, 2, 12, 10, 8, 6, 4, 2, 14, 10, 6, 12, 8, 2, 4, 16
Offset: 1

Views

Author

Omar E. Pol, Jun 03 2012

Keywords

Comments

First differs from A213362 at a(12).
The list of the spin-orbit coupling of this version of the nuclear shell model starts: 1s_(1/2), 1p_(3/2), 1p_(1/2), 1d_(5/2), 2s_(1/2), 1d_(3/2), 1f_(7/2), 2p_(3/2), 1f_(5/2), 2p_(1/2), 1g_(9/2), 1g_(7/2), 2d_(5/2), 2d_(3/2), etc. (see link section). The numerators of the fractions are 1, 3, 1, 5, 1, 3, 7, 3, 5, 1, 9, 7, 5, 3,... then we add 1 to every numerator, so we have this sequence: 2, 4, 2, 6, 2, 4, 8, 4, 6, 2, 10, 8, 6, 4,... Other sequences that arise from this sequence are A212121, A212123, A212124. - Omar E. Pol, Sep 02 2012

Examples

			Illustration of initial terms: two views of a three-dimensional shell model of nucleus.
|-------------------------- j --------------------------|
|                                                       |
|   |---------------------- i ----------------------|   |
|   |                                               |   |
|   |   |------------------ h ------------------|   |   |
|   |   |                                       |   |   |
|   |   |   |-------------- g --------------|   |   |   |
|   |   |   |                               |   |   |   |
|   |   |   |   |---------- f ----------|   |   |   |   |
|   |   |   |   |                       |   |   |   |   |
|   |   |   |   |   |------ d ------|   |   |   |   |   |
|   |   |   |   |   |               |   |   |   |   |   |
|   |   |   |   |   |   |-- p --|   |   |   |   |   |   |
|   |   |   |   |   |   |       |   |   |   |   |   |   |
|   |   |   |   |   |   |   s   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   2   |   |   |   |   |   |   |
|   |   |   |   |   |   4   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   2   |   |   |   |   |   |
|   |   |   |   |   6   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   2   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   4   |   |   |   |   |
|   |   |   |   8   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   4   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   6   |   |   |   |
|   |   |   |   |   |   |   |   2   |   |   |   |   |   |
|   |   |  10   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   8   |   |   |
|   |   |   |   |   6   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   4   |   |   |   |   |
|   |   |   |   |   |   |   2   |   |   |   |   |   |   |
|   |  12   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |  10   |   |
|   |   |   |   8   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   6   |   |   |   |
|   |   |   |   |   |   4   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   2   |   |   |   |   |   |
|  14   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |  10   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   6   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |  12   |
|   |   |   |   |   |   |   |   |   |   |   8   |   |   |
|   |   |   |   |   |   |   2   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   4   |   |   |   |   |
16  |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |1/2|   |   |   |   |   |   |
|   |   |   |   |   |   |           |   |   |   |   |   |
|   |   |   |   |   |   |----3/2----|   |   |   |   |   |
|   |   |   |   |   |                   |   |   |   |   |
|   |   |   |   |   |--------5/2--------|   |   |   |   |
|   |   |   |   |                           |   |   |   |
|   |   |   |   |------------7/2------------|   |   |   |
|   |   |   |                                   |   |   |
|   |   |   |----------------9/2----------------|   |   |
|   |   |                                           |   |
|   |   |-------------------11/2--------------------|   |
|   |                                                   |
|   |-----------------------13/2------------------------|
|
|---------------------------15/2-------------------------
.
..........................................................
.
|-------------------------- j --------------------------|
*                                                       |
*   |---------------------- i ----------------------|   |
|   *                                               |   *
|   *   |------------------ h ------------------|   |   *
*   |   *                                       |   *   |
*   |   *   |-------------- f --------------|   |   *   |
|   *   |   *                               |   *   |   *
|   *   |   *   |---------- e ----------|   |   *   |   *
*   |   *   |   *                       |   *   |   *   |
*   |   *   |   *   |------ d ------|   |   *   |   *   |
|   *   |   *   |   *               |   *   |   *   |   *
|   *   |   *   |   *   |-- p --|   |   *   |   *   |   *
*   |   *   |   *   |   *       |   *   |   *   |   *   |
*   |   *   |   *   |   *   s   |   *   |   *   |   *   |
|   *   |   *   |   *   |   *   *   |   *   |   *   |   *
|   *   |   *   |   *   |   *   *   |   *   |   *   |   *
*   |   *   |   *   |   *   |   |   *   |   *   |   *   |
*   |   *   |   *   |   *   |1/2|   *   |   *   |   *   |
|   *   |   *   |   *   |           |   *   |   *   |   *
|   *   |   *   |   *   |----3/2----|   *   |   *   |   *
*   |   *   |   *   |                   |   *   |   *   |
*   |   *   |   *   |--------5/2--------|   *   |   *   |
|   *   |   *   |                           |   *   |   *
|   *   |   *   |------------7/2------------|   *   |   *
*   |   *   |                                   |   *   |
*   |   *   |----------------9/2----------------|   *   |
|   *   |                                           |   *
|   *   |-------------------11/2--------------------|   *
*   |                                                   |
*   |-----------------------13/2------------------------|
|
|---------------------------15/2-------------------------
.
Written as an irregular triangle in which row n represents the n-th shell of nucleus. Note that row 4 has only one term. Triangle begins:
2;
4,   2;
6,   2,  4;
8;
4,   6,  2, 10;
8,   6,  4,  2, 12;
10,  8,  6,  4,  2, 14;
10,  6, 12,  8,  2,  4, 16;
...
		

References

  • M. Goeppert Mayer and J. Hans D. Jensen, Elementary Theory of Nuclear Shell Structure, J. Wiley and Sons, Inc. (1955).

Crossrefs

Row sums give A210842. Partial sums give A212124.
Other versions are A162630, A212012, A213362, A213372.

Formula

a(n) = 2*A212121(n).

A162522 First differences of magic numbers A018226.

Original entry on oeis.org

6, 12, 8, 22, 32, 44
Offset: 1

Views

Author

Omar E. Pol, Jul 06 2009

Keywords

Comments

Sequence related to atomic nuclei.

Crossrefs

A162521 Magic numbers A018226 divided by 2.

Original entry on oeis.org

1, 4, 10, 14, 25, 41, 63
Offset: 1

Views

Author

Omar E. Pol, Jul 06 2009

Keywords

Comments

Sequence related to atomic nuclei.

Crossrefs

A162523 First differences of magic numbers A018226, divided by 2.

Original entry on oeis.org

3, 6, 4, 11, 16, 22
Offset: 1

Views

Author

Omar E. Pol, Jul 06 2009

Keywords

Comments

Sequence related to atomic nucleus.

Crossrefs

Formula

a(n) = A162522(n)/2.

A162524 Partial sums of magic numbers A018226.

Original entry on oeis.org

2, 10, 30, 58, 108, 190, 316
Offset: 1

Views

Author

Omar E. Pol, Jul 06 2009

Keywords

Comments

Sequence related to atomic nuclei.

Crossrefs

Extensions

Edited by Omar E. Pol, Jul 16 2009

A162525 Partial sums of magic numbers A018226, divided by 2.

Original entry on oeis.org

1, 5, 15, 29, 54, 95, 158
Offset: 1

Views

Author

Omar E. Pol, Jul 06 2009

Keywords

Comments

Sequence related to atomic nuclei.

Crossrefs

Formula

a(n) = A162524(n)/2.
Showing 1-10 of 13 results. Next