cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jessica A. Tomasko

Jessica A. Tomasko's wiki page.

Jessica A. Tomasko has authored 5 sequences.

A362197 Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 10 with exactly one descent.

Original entry on oeis.org

1, 1, 2, 5, 12, 27, 58, 121, 248, 503, 1013, 2025, 4005, 7801, 14899, 27809, 50627, 89829, 155364, 262125, 431890, 695839, 1097768, 1698137, 2579106, 3850731, 5658511, 8192497, 11698195, 16489517, 22964057, 31620993, 43081941, 58115113, 77663158, 102875093
Offset: 0

Author

Jessica A. Tomasko, Apr 29 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. The definition for sigma is a pattern of size 10 with exactly one descent. For example, sigma can be chosen to be 124789356(10), 247913568(10), 36(10)1245789, 57(10)1234689, etc.

Crossrefs

Formula

a(n) = 1 + Sum_{i=2..9} binomial(n,i).
G.f.: (1-9*x+37*x^2-90*x^3+142*x^4-150*x^5+106*x^6-48*x^7+13*x^8-x^9)/(1-x)^10.

A362196 Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 9 with exactly one descent.

Original entry on oeis.org

1, 1, 2, 5, 12, 27, 58, 121, 248, 502, 1003, 1970, 3785, 7086, 12897, 22804, 39187, 65519, 106744, 169747, 263930, 401909, 600348, 880947, 1271602, 1807756, 2533961, 3505672, 4791295, 6474512, 8656907, 11460918, 15033141, 19548013, 25211902, 32267633, 40999480
Offset: 0

Author

Jessica A. Tomasko, Apr 20 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. The definition for sigma is a pattern of size 9 with exactly one descent. For example, sigma can be chosen to be 124793568, 248135679, 367912458, 591234678, etc.

Crossrefs

Programs

  • Mathematica
    Table[1 + Sum[Binomial[n, i-1],{i,3,9}],{n,0,36}] (* Stefano Spezia, Apr 20 2023 *)

Formula

a(n) = 1 + Sum_{i=2..8} binomial(n,i).
G.f.: (1-8*x+29*x^2-61*x^3+81*x^4-69*x^5+37*x^6-11*x^7+2*x^8)/(1-x)^9.
a(n) = (n^8-20*n^7+210*n^6-1064*n^5+3969*n^4-4340*n^3+15980*n^2-14736*n+40320)/8!. - Alois P. Heinz, Apr 21 2023

A362195 Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 8 with exactly one descent.

Original entry on oeis.org

1, 1, 2, 5, 12, 27, 58, 121, 247, 493, 958, 1805, 3290, 5799, 9894, 16369, 26317, 41209, 62986, 94165, 137960, 198419, 280578, 390633, 536131, 726181, 971686, 1285597, 1683190, 2182367, 2803982, 3572193, 4514841, 5663857, 7055698, 8731813, 10739140, 13130635
Offset: 0

Author

Jessica A. Tomasko, Apr 20 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. The definition for sigma is a pattern of size 8 with exactly one descent. For example, sigma can be chosen to be 12473568, 24781356, 36124578, 58123467, etc.

Crossrefs

Programs

  • Mathematica
    Table[1 + Sum[Binomial[n, i-1],{i,3,8}],{n,0,37}] (* Stefano Spezia, Apr 20 2023 *)

Formula

a(n) = 1 + Sum_{i=3..8} binomial(n, i-1).
G.f.: (1-7*x+22*x^2-39*x^3+42*x^4-27*x^5+10*x^6-x^7)/(1-x)^8.

A362194 Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 7 with exactly one descent.

Original entry on oeis.org

1, 1, 2, 5, 12, 27, 58, 120, 239, 457, 838, 1475, 2498, 4083, 6462, 9934, 14877, 21761, 31162, 43777, 60440, 82139, 110034, 145476, 190027, 245481, 313886, 397567, 499150, 621587, 768182, 942618, 1148985, 1391809, 1676082, 2007293, 2391460, 2835163, 3345578, 3930512
Offset: 0

Author

Jessica A. Tomasko, Apr 20 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. The definition for sigma is a pattern of size 7 with exactly one descent. For example, sigma can be chosen to be 1247356, 2413567, 3671245, 5712346, etc.

Crossrefs

Programs

  • PARI
    a(n) = 1 + sum(i=2, 6, binomial(n,i)) \\ Andrew Howroyd, Apr 20 2023

Formula

a(n) = 1 + Sum_{i=2..6} binomial(n, i).
a(n) = A008859(n) - n.
G.f.: (1-6*x+16*x^2-23*x^3+19*x^4-8*x^5+2*x^6)/(1-x)^7.
E.g.f.: exp(x)*(720 + 360*x^2 + 120*x^3 + 30*x^4 + 6*x^5 + x^6)/720. - Stefano Spezia, Apr 20 2023

A362193 Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 6 with exactly one descent.

Original entry on oeis.org

1, 1, 2, 5, 12, 27, 57, 113, 211, 373, 628, 1013, 1574, 2367, 3459, 4929, 6869, 9385, 12598, 16645, 21680, 27875, 35421, 44529, 55431, 68381, 83656, 101557, 122410, 146567, 174407, 206337, 242793, 284241, 331178, 384133, 443668, 510379, 584897
Offset: 0

Author

Jessica A. Tomasko, Apr 10 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. The definition for sigma is a pattern of size 6 with exactly one descent. For example, sigma can be chosen to be 124356, 241356, 361245, 512346, etc.

Programs

  • Maple
    a:= n-> 1+(n-1)*n*(n+1)*(n*(n-5)+26)/120:
    seq(a(n), n=0..38);  # Alois P. Heinz, Apr 12 2023
  • Mathematica
    CoefficientList[Series[(1 - 5 x + 11 x^2 - 12 x^3 + 7 x^4 - x^5)/(1 - x)^6, {x, 0, 38}], x] (* Michael De Vlieger, Apr 12 2023 *)
  • PARI
    a(n) = 1 + sum(i=3, 6, binomial(n, i-1)) \\ Andrew Howroyd, Apr 10 2023

Formula

a(n) = 1 + Sum_{i=2..5} binomial(n,i).
G.f.: (1-5*x+11*x^2-12*x^3+7*x^4-x^5)/(1-x)^6.
a(0) = 1; a(1) = 1; a(n) = 1 + A027660(n-2), n >= 2. - Omar E. Pol, Apr 12 2023