A176206
Irregular triangle T(n,k) (n >= 1, k >= 1) read by rows: row n has length A000070(n-1) and every column k gives the positive integers.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3
Offset: 1
Triangle begins:
1;
2, 1;
3, 2, 1, 1;
4, 3, 2, 2, 1, 1, 1;
5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1;
6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, ...
... Extended by _Omar E. Pol_, Nov 23 2020
From _Omar E. Pol_, Jan 25 2020: (Start)
For n = 5, by definition the length of row 5 is A000070(5-1) = A000070(4) = 12, so the row 5 of triangle has 12 terms. Since every column lists the positive integers A000027 so the row 5 is [5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1].
Then we have that the divisors of the numbers of the 5th row are:
.
5th row of triangle -----> 5 4 3 3 2 2 2 1 1 1 1 1
1 2 1 1 1 1 1
1
.
There are twelve 1's, four 2's, two 3's, one 4 and one 5.
In total there are 12 + 4 + 2 + 1 + 1 = 20 divisors.
On the other hand the partitions of 5 are as shown below:
.
. 5
. 3 2
. 4 1
. 2 2 1
. 3 1 1
. 2 1 1 1
. 1 1 1 1 1
.
There are twelve 1's, four 2's, two 3's, one 4 and one 5, as shown also in the 5th row of triangle A066633.
In total there are 12 + 4 + 2 + 1 + 1 = A006128(5) = 20 parts.
Finally in accordance with the conjecture we can see that all divisors of all numbers in the 5th row of the triangle are the same positive integers as all parts of all partitions of 5. (End)
-
Table[Flatten[Table[ConstantArray[n-k,PartitionsP[k]],{k,0,n-1}]],{n,10}] (* Paolo Xausa, May 30 2022 *)
New name, changed offset, edited and more terms from
Omar E. Pol, Nov 22 2020
A337209
Triangle read by rows T(n,k), (n >= 1, k > = 1), in which row n has length A000070(n-1) and every column gives A000203, the sum of divisors function.
Original entry on oeis.org
1, 3, 1, 4, 3, 1, 1, 7, 4, 3, 3, 1, 1, 1, 6, 7, 4, 4, 3, 3, 3, 1, 1, 1, 1, 1, 12, 6, 7, 7, 4, 4, 4, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 8, 12, 6, 6, 7, 7, 7, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 8, 12, 12, 6, 6, 6, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4, 4
Offset: 1
Triangle begins:
1;
3, 1;
4, 3, 1, 1;
7, 4, 3, 3, 1, 1, 1;
6, 7, 4, 4, 3, 3, 3, 1, 1, 1, 1, 1;
12, 6, 7, 7, 4, 4, 4, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1;
8, 12, 6, 6, 7, 7, 7, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, ...
...
Sum of divisors of terms of
A176206.
-
A337209row[n_]:=Flatten[Table[ConstantArray[DivisorSigma[1,n-m],PartitionsP[m]],{m,0,n-1}]];Array[A337209row,10] (* Paolo Xausa, Sep 02 2023 *)
-
f(n) = sum(k=0, n-1, numbpart(k));
T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (sigma(n))); my(s=0); while (k <= f(n-1), s++; n--;); sigma(1+s);}
tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); );} \\ Michel Marcus, Jan 13 2021
A339258
Triangle read by rows T(n,k), (n >= 1, k > = 1), in which row n has length A000070(n-1) and every column gives A000005, the number of divisors function.
Original entry on oeis.org
1, 2, 1, 2, 2, 1, 1, 3, 2, 2, 2, 1, 1, 1, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 4, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 4, 4, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2
Offset: 1
Triangle begins:
1;
2, 1;
2, 2, 1, 1;
3, 2, 2, 2, 1, 1, 1;
2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1;
4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
2, 4, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, ...
...
Row sums give
A006128 (conjectured).
-
A339258row[n_]:=Flatten[Table[ConstantArray[DivisorSigma[0,n-m],PartitionsP[m]],{m,0,n-1}]];Array[A339258row,10] (* Paolo Xausa, Sep 02 2023 *)
-
f(n) = sum(k=0, n-1, numbpart(k));
T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (numdiv(n))); my(s=0); while (k <= f(n-1), s++; n--;); numdiv(1+s);}
tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); print;);} \\ Michel Marcus, Jan 13 2021
A161919
Permutation of natural numbers: concatenation of subsequences A161924(A000070(k-1)..A026905(k)), k >= 1, each sorted into ascending order.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 6, 8, 9, 11, 15, 10, 13, 16, 17, 19, 23, 31, 12, 14, 18, 21, 27, 32, 33, 35, 39, 47, 63, 20, 22, 25, 29, 34, 37, 43, 55, 64, 65, 67, 71, 79, 95, 127, 24, 26, 30, 36, 38, 41, 45, 51, 59, 66, 69, 75, 87, 111, 128, 129, 131, 135, 143, 159, 191, 255, 28, 40
Offset: 1
This can be viewed as an irregular table, where row r (>= 1) has A000041(r) elements, i.e., as 1; 2,3; 4,5,7; 6,8,9,11,15; 10,13,16,17,19,23,31; etc. A125106 illustrates how each number is mapped to a partition.
Inverse:
A166277. Sequence
A161924 gives the same rows before sorting.
-
n := 11: s := proc (b) local t, i, j: t := 0: for i to nops(b) do for j from i+1 to nops(b) do if b[j]-b[i] = 1 then t := t+1 else end if end do end do: t end proc: A[n] := {}: for i to 2^n do a[i] := convert(2*i, base, 2) end do: for k to 2^n do if s(a[k]) = n then A[n] := `union`(A[n], {k}) else end if end do: A[n]; # Emeric Deutsch, Feb 26 2016
# second Maple program:
f:= proc(l) local i, r; r:= 0; for i to nops(l)-1 do
r:= 2*((x-> 2*x+1)@@(l[i+1]-l[i]))(r) od; r/2
end:
b:= proc(n, i) `if`(n=0 or i=1, [[0, 1$n]], [b(n, i-1)[],
`if`(i>n, [], map(x-> [x[], i], b(n-i, i)))[]])
end:
T:= n-> sort(map(f, b(n$2)))[]:
seq(T(n), n=1..10); # Alois P. Heinz, Jul 25 2017
# 3rd Maple program:
m := 10; with(combinat): ff := proc (X) local s: s := [1, seq(0, j = 1 .. X[2])]: s := map(convert, s, string): return cat(op(s)) end proc: partovi := proc (P) local X, n, Y, i: X := convert(P, multiset): n := X[-1][1]: Y := map(proc (t) options operator, arrow: t[1] end proc, X): for i to n do if member(i, Y) = false then X := [op(X), [i, 0]] end if end do: X := sort(X, proc (s, t) options operator, arrow: evalb(s[1] < t[1]) end proc): X := map(ff, X): X := cat(op(X)): n := parse(X): n := convert(n, decimal, binary): (1/2)*n end proc: for n to m do {seq(partovi(partition(n)[q]), q = 1 .. numbpart(n))} end do; # Emeric Deutsch, Aug 31 2017
-
columns = 10;
row[n_] := n - 2^Floor[Log2[n]];
col[0] = 0; col[n_] := If[EvenQ[n], col[n/2] + DigitCount[n/2, 2, 1], col[(n-1)/2] + 1];
Clear[T]; T[, ] = 0; Do[T[row[k], col[k]] = k, {k, 1, 2^columns}];
Table[DeleteCases[Sort @ Table[T[n-1, k], {n, 1, 2^(k-1)}], 0], {k, 1, columns}] // Flatten (* Jean-François Alcover, Feb 16 2021 *)
A340531
Irregular triangle read by rows T(n,k), (n >= 1, k >= 1), in which row n has length is A000070(n-1) and every column k is A024916, the sum of all divisors of all numbers <= n.
Original entry on oeis.org
1, 4, 1, 8, 4, 1, 1, 15, 8, 4, 4, 1, 1, 1, 21, 15, 8, 8, 4, 4, 4, 1, 1, 1, 1, 1, 33, 21, 15, 15, 8, 8, 8, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 41, 33, 21, 21, 15, 15, 15, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 56, 41, 33, 33, 21, 21, 21, 15, 15, 15, 15, 15
Offset: 1
Triangle begins:
1;
4, 1;
8, 4, 1, 1;
15, 8, 4, 4, 1, 1, 1;
21, 15, 8, 8, 4, 4, 4, 1, 1, 1, 1, 1;
33, 21, 15, 15, 8, 8, 8, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1;
...
For n = 5 the length of row 5 is A000070(4) = 12.
The sum of row 5 is 21 + 15 + 8 + 8 + 4 + 4 + 4 + 1 + 1 + 1 + 1 + 1 = 69, equaling A182738(5).
A346741
Irregular triangle read by rows which is constructed in row n replacing the first A000070(n-1) terms of A336811 with their divisors.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 2, 3, 6, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1
Offset: 1
Triangle begins:
[1];
[1],[1, 2];
[1],[1, 2],[1, 3],[1];
[1],[1, 2],[1, 3],[1],[1, 2, 4],[1, 2],[1];
[1],[1, 2],[1, 3],[1],[1, 2, 4],[1, 2],[1],[1, 5],[1, 3],[1, 2],[1],[1];
...
Below the table shows the correspondence divisor/part.
|---|-----------------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|-----------------|-----|-------|---------|-----------|-------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
----|-----------------|-----|-------|---------|-----------|-------------|
.
|---|-----------------|-----|-------|---------|-----------|-------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| |
| I | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| N | | * | * * | * * * | * * * * | * * * * * |
| K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
|---|-----------------|-----|-------|---------|-----------|-------------|
.
. |-------|
. |Section|
|---|-------|---------|-----|-------|---------|-----------|-------------|
| | 1 | A000012 | 1 | 1 | 1 | 1 | 1 |
| |-------|---------|-----|-------|---------|-----------|-------------|
| | 2 | A000034 | | 1 2 | 1 2 | 1 2 | 1 2 |
| |-------|---------|-----|-------|---------|-----------|-------------|
| D | 3 | A010684 | | | 1 3 | 1 3 | 1 3 |
| I | | A000012 | | | 1 | 1 | 1 |
| V |-------|---------|-----|-------|---------|-----------|-------------|
| I | 4 | A069705 | | | | 1 2 4 | 1 2 4 |
| S | | A000034 | | | | 1 2 | 1 2 |
| O | | A000012 | | | | 1 | 1 |
| R |-------|---------|-----|-------|---------|-----------|-------------|
| S | 5 | A010686 | | | | | 1 5 |
| | | A010684 | | | | | 1 3 |
| | | A000034 | | | | | 1 2 |
| | | A000012 | | | | | 1 |
| | | A000012 | | | | | 1 |
|---|-------|---------|-----|-------|---------|-----------|-------------|
.
In the above table both the zone of partitions and the "Link" zone are the same zones as in the table of the example section of A338156, but here in the lower zone the divisors are ordered in accordance with the sections of the set of partitions of n.
The number of rows in the j-th section of the lower zone is equal to A000041(j-1).
The divisors of the j-th section are also the parts of the j-th section of the set of partitions of n.
The product of row n is
A007870(n).
Row n lists the first n rows of
A336812.
The number of parts k in row n is
A066633(n,k).
The sum of all parts k in row n is
A138785(n,k).
The number of parts >= k in row n is
A181187(n,k).
The sum of all parts >= k in row n is
A206561(n,k).
The number of parts <= k in row n is
A210947(n,k).
The sum of all parts <= k in row n is
A210948(n,k).
Cf.
A000012,
A000034,
A000041,
A000070,
A002260,
A010684,
A010686,
A027750,
A066633,
A069705,
A135010,
A138785,
A181187,
A221529,
A221649,
A237593,
A302246,
A302247,
A336811,
A340011,
A340031,
A340032,
A340035,
A340056,
A340057.
Original entry on oeis.org
1, 2, 8, 21, 60, 133, 330, 675, 1474, 2910, 5838, 10920, 20944, 37673, 68580, 120384, 211365, 359964, 614845, 1022630, 1701678, 2776752, 4517016, 7232565, 11557350, 18201568, 28579152, 44373420, 68634280, 105109125, 160436916, 242692582, 365853180, 547346709
Offset: 0
a(4) = 60 = A000041(4) * A000070(4) = 5 * 12.
a(4) = 60 = sum of row 4 terms of row 4 in triangle A143228: (5 + 5 + 10 + 15 + 25).
A340530
Irregular triangle read by rows T(n,k) in which row n has length is A000070(n-1) and every column k is A006218, (n >= 1, k >= 1).
Original entry on oeis.org
1, 3, 1, 5, 3, 1, 1, 8, 5, 3, 3, 1, 1, 1, 10, 8, 5, 5, 3, 3, 3, 1, 1, 1, 1, 1, 14, 10, 8, 8, 5, 5, 5, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 16, 14, 10, 10, 8, 8, 8, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 20, 16, 14, 14, 10, 10, 10, 8, 8, 8, 8, 8, 5, 5, 5, 5, 5, 5, 5
Offset: 1
Triangle begins:
1;
3, 1;
5, 3, 1, 1;
8, 5, 3, 3, 1, 1, 1;
10, 8, 5, 5, 3, 3, 3, 1, 1, 1, 1, 1;
14, 10, 8, 8, 5, 5, 5, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1;
...
For n = 5 the length of row 5 is A000070(4) = 12.
The sum of row 5 is 10 + 8 + 5 + 5 + 3 + 3 + 3 + 1 + 1 + 1 + 1 + 1 = 42, equaling A284870(5).
A340579
Triangle read by rows: T(n,k) = A000203(n-k+1)*A000070(k-1), 1 <= k <= n.
Original entry on oeis.org
1, 3, 2, 4, 6, 4, 7, 8, 12, 7, 6, 14, 16, 21, 12, 12, 12, 28, 28, 36, 19, 8, 24, 24, 49, 48, 57, 30, 15, 16, 48, 42, 84, 76, 90, 45, 13, 30, 32, 84, 72, 133, 120, 135, 67, 18, 26, 60, 56, 144, 114, 210, 180, 201, 97, 12, 36, 52, 105, 96, 228, 180, 315, 268, 291, 139, 28, 24, 72, 91
Offset: 1
Triangle begins:
1;
3, 2;
4, 6, 4;
7, 8, 12, 7;
6, 14, 16, 21, 12;
12, 12, 28, 28, 36, 19;
8, 24, 24, 49, 48, 57, 30;
15, 16, 48, 42, 84, 76, 90, 45;
13, 30, 32, 84, 72, 133, 120, 135, 67;
18, 26, 60, 56, 144, 114, 210, 180, 201, 97;
12, 36, 52, 105, 96, 228, 180, 315, 268, 291, 139;
...
For n = 6 the calculation of every term of row 6 is as follows:
-------------------------
k A000070 T(6,k)
1 1 * 12 = 12
2 2 * 6 = 12
3 4 * 7 = 28
4 7 * 4 = 28
5 12 * 3 = 36
6 19 * 1 = 19
. A000203
-------------------------
The sum of row 6 is 12 + 12 + 28 + 28 + 36 + 19 = 135, equaling A182738(6).
Cf.
A000070,
A000203,
A024916,
A221529,
A221531,
A237593,
A339106,
A340424,
A340426,
A340524,
A340525,
A340526,
A340527,
A340531.
-
row(n) = vector(n, k, sigma(n-k+1)*sum(i=0, k-1, numbpart(i))); \\ Michel Marcus, Jul 23 2021
A220483
Total number of smallest parts that are also emergent parts in all partitions of n with at least one distinct part: a(n) = n + d(n) + p(n-1) + spt(n) - A000070(n) - sigma(n) - 1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 8, 11, 19, 26, 34, 51, 67, 91, 118, 158, 200, 271, 331, 433, 538, 699, 849, 1089, 1323, 1674, 2030, 2542, 3066, 3813, 4567, 5640, 6760, 8272, 9871, 12002, 14290, 17287, 20515, 24675, 29214, 34981, 41282, 49216, 57957, 68798
Offset: 1
Cf.
A000005,
A000041,
A000070,
A000203,
A002865,
A092269,
A182699,
A182709,
A183152,
A193827,
A195820,
A206437,
A215513,
A220479,
A220489.
-
b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]];
a[n_] := n + DivisorSigma[0, n] + PartitionsP[n - 1] + b[n, n] -
Total[PartitionsP[Range[0, n]]] - DivisorSigma[1, n] - 1;
Array[a, 50] (* Jean-François Alcover, Jun 05 2021, using Alois P. Heinz's code for A092269 *)
Showing 1-10 of 454 results.
Comments