A363256 Number of length n strings on the alphabet {0,1,2,3} with digit sum at most 4.
1, 4, 13, 32, 66, 121, 204, 323, 487, 706, 991, 1354, 1808, 2367, 3046, 3861, 4829, 5968, 7297, 8836, 10606, 12629, 14928, 17527, 20451, 23726, 27379, 31438, 35932, 40891, 46346, 52329, 58873, 66012, 73781, 82216, 91354, 101233, 111892, 123371, 135711
Offset: 0
Examples
For n=2, the 13 strings are all possible 2-character strings of '0', '1', '2' and '3' except the four strings '33', '32', '23'.
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Mathematica
f[n_, r_, l_] := If[r < 0, 0, If[r==0, 1, If[l < 0, 0, If[l == 0, 1, Sum[f[n, r-j, l-1], {j, 0, n}]]]]]; Table[f[3, 4,x], {x, 0, 40}]
Formula
a(n) = (((n + 10)*n + 35)*n + 26)*n/24 + 1.
G.f.: -(x^4 - 3*x^3 + 3*x^2 - x + 1)/(x - 1)^5.
a(n) = 1 + A005718(n-1) for n>=1.