A049209
a(n) = -Product_{k=0..n} (7*k-1); sept-factorial numbers.
Original entry on oeis.org
1, 6, 78, 1560, 42120, 1432080, 58715280, 2818333440, 155008339200, 9610517030400, 663125675097600, 50397551307417600, 4182996758515660800, 376469708266409472000, 36517561701841718784000, 3797826416991538753536000, 421558732286060801642496000
Offset: 0
Row sums of triangle
A051186 (scaled Stirling1 triangle).
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6), this sequence (m=7),
A049210 (m=8),
A049211 (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
[ -&*[ (7*k-1): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
-
CoefficientList[Series[(1-7*x)^(-6/7),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
With[{m=7}, Table[m^n*Pochhammer[(m-1)/m, n], {n, 0, 30}]] (* G. C. Greubel, Feb 16 2022 *)
-
m=7; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022
A049211
a(n) = Product_{k=1..n} (9*k - 1); 9-factorial numbers.
Original entry on oeis.org
1, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, 1270453824640, 101636305971200, 9045631231436800, 886471860680806400, 94852489092846284800, 11002888734770169036800, 1375361091846271129600000, 184298386307400331366400000, 26354669241958247385395200000
Offset: 0
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6),
A049209 (m=7),
A049210 (m=8), this sequence (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
m:=9; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 08 2022
-
CoefficientList[Series[(1-9*x)^(-8/9),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
a(n) = prod(k=1, n, 9*k-1); \\ Michel Marcus, Jan 08 2015
-
m=9; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 08 2022
a(9) (originally given incorrectly as 1011636305971200) corrected by
Peter Bala, Feb 20 2015
a(16) corrected and incorrect MAGMA program removed by
Georg Fischer, May 10 2021
A049212
a(n) = -Product_{k=0..n} (10*k - 1); deca-factorial numbers.
Original entry on oeis.org
1, 9, 171, 4959, 193401, 9476649, 559122291, 38579438079, 3047775608241, 271252029133449, 26853950884211451, 2927080646379048159, 348322596919106730921, 44933615002564768288809, 6245772485356502792144451, 930620100318118916029523199, 147968595950580907648694188641
Offset: 0
-
[Round(10^n*Gamma(n+9/10)/Gamma(9/10)): n in [0..25]]; // G. C. Greubel, Feb 03 2022
-
CoefficientList[Series[(1-10*x)^(-9/10),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
a(n) = {-prod(k=0, n, 10*k-1)} \\ Andrew Howroyd, Jan 02 2020
-
[10^n*rising_factorial(9/10, n) for n in (0..25)] # G. C. Greubel, Feb 03 2022
A254322
Expansion of e.g.f.: (1-11*x)^(-10/11).
Original entry on oeis.org
1, 10, 210, 6720, 288960, 15603840, 1014249600, 77082969600, 6706218355200, 657209398809600, 71635824470246400, 8596298936429568000, 1126115160672273408000, 159908352815462823936000, 24465977980765812062208000, 4012420388845593178202112000
Offset: 0
Sequences of the form k^n*Pochhammer((k-1)/k, n):
A000007 (k=1),
A001147 (k=2),
A008544 (k=3),
A008545 (k=4),
A008546 (k=5),
A008543 (k=6),
A049209 (k=7),
A049210 (k=8),
A049211 (k=9),
A049212 (k=10), this sequence (k=11),
A346896 (k=12).
-
m=11; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 08 2022
-
CoefficientList[Series[(1-11*x)^(-10/11), {x, 0, 20}], x] * Range[0, 20]!
FullSimplify[Table[11^n * Gamma[n+10/11] / Gamma[10/11], {n, 0, 18}]]
-
m=11; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 08 2022
A034975
One seventh of octo-factorial numbers.
Original entry on oeis.org
1, 15, 345, 10695, 417105, 19603935, 1078216425, 67927634775, 4822862069025, 381006103452975, 33147531000408825, 3149015445038838375, 324348590839000352625, 36002693583129039141375, 4284320536392355657823625, 544108708121829168543600375, 73454675596446937753386050625
Offset: 1
-
[n le 1 select 1 else (8*n-1)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
-
Table[8^n*Pochhammer[7/8, n]/7, {n, 40}] (* G. C. Greubel, Oct 21 2022 *)
-
[8^n*rising_factorial(7/8,n)/7 for n in range(1,40)] # G. C. Greubel, Oct 21 2022
A346896
Expansion of e.g.f.: (1-12*x)^(-11/12).
Original entry on oeis.org
1, 11, 253, 8855, 416185, 24554915, 1743398965, 144702114095, 13746700839025, 1470896989775675, 175036741783305325, 22929813173612997575, 3278963283826658653225, 508239308993132091249875, 84875964601853059238729125, 15192797663731697603732513375
Offset: 0
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6),
A049209 (m=7),
A049210 (m=8),
A049211 (m=9),
A049212 (m=10),
A254322 (m=11), this sequence (m=12).
-
m:=12; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 16 2022
-
CoefficientList[Series[(1-12*x)^(-11/12),{x,0,20}], x] * Range[0, 20]!
FullSimplify[Table[12^n Gamma[n+11/12]/Gamma[11/12],{n,0,15}]] (* Stefano Spezia, Aug 07 2021 *)
-
m=12; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 16 2022
A051187
Generalized Stirling number triangle of the first kind.
Original entry on oeis.org
1, -8, 1, 128, -24, 1, -3072, 704, -48, 1, 98304, -25600, 2240, -80, 1, -3932160, 1122304, -115200, 5440, -120, 1, 188743680, -57802752, 6651904, -376320, 11200, -168, 1, -10569646080, 3425697792, -430309376, 27725824, -1003520, 20608, -224, 1
Offset: 1
Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-8, 1;
128, -24, 1;
-3072, 704, -48, 1;
98304, -25600, 2240, -80, 1;
-3932160, 1122304, -115200, 5440, -120, 1;
188743680, -57802752, 6651904, -376320, 11200, -168, 1;
...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x - 8*j) = 128*x - 24*x^2 + x^3.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les polynômes de Stirling, Bulletin de la Société des mathématiciens et physiciens de la R. P. de Serbie, t. 10 (1958), 43-49.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieur, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 43 (1960), 1-63.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur une classe de nombres se rattachant aux nombres de Stirling--Appendice: Table des nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 60 (1961), 1-15 and 17-62.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- Niels Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
First (m=1) column sequence is:
A051189(n-1).
Row sums (signed triangle):
A049210(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A045755(n).
A303007
Expansion of (1-240*x)^(1/8).
Original entry on oeis.org
1, -30, -3150, -472500, -81506250, -15160162500, -2956231687500, -595469525625000, -122815589660156250, -25791273828632812500, -5493541325498789062500, -1183608449221102734375000, -257434837705589844726562500, -56437637496994696728515625000
Offset: 0
(1-b*x)^(1/
A003557(b)):
A002420 (b=4),
A004984 (b=8),
A004990 (b=9), (-1)^n *
A108735 (b=12),
A301271 (b=16), (-1)^n *
A108733 (b=18),
A049393 (b=25),
A004996 (b=36), this sequence (b=240),
A303055 (b=504),
A305886 (b=1728).
-
CoefficientList[Series[Surd[1-240x,8],{x,0,20}],x] (* Harvey P. Dale, Aug 29 2024 *)
-
N=20; x='x+O('x^N); Vec((1-240*x)^(1/8))
A088996
Triangle T(n, k) read by rows: T(n, k) = Sum_{j=0..n} binomial(j, n-k) * |Stirling1(n, n-j)|.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 7, 6, 0, 6, 29, 46, 24, 0, 24, 146, 329, 326, 120, 0, 120, 874, 2521, 3604, 2556, 720, 0, 720, 6084, 21244, 39271, 40564, 22212, 5040, 0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 2, 7, 6;
0, 6, 29, 46, 24;
0, 24, 146, 329, 326, 120;
0, 120, 874, 2521, 3604, 2556, 720;
0, 720, 6084, 21244, 39271, 40564, 22212, 5040;
0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320;
...
-
A088996:= func< n,k | (&+[(-1)^j*Binomial(j,n-k)*StirlingFirst(n,n-j): j in [0..n]]) >;
[A088996(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 23 2022
-
A059364 := (n, k) -> add(abs(Stirling1(n, n - j))*binomial(j, n - k), j = 0..n);
seq(seq(A059364(n, k), k = 0..n), n = 0..8); # Peter Luschny, Aug 27 2025
-
T[n_, k_]:= T[n, k]= Sum[(-1)^(n-i)*Binomial[i, k] StirlingS1[n+1, n+1-i], {i, 0, n}]; {{1}}~Join~Table[Abs@ T[n, k], {n,0,10}, {k,n+1,0,-1}] (* Michael De Vlieger, Jun 19 2018 *)
-
def A088996(n,k): return add((-1)^(n-i)*binomial(i,k)*stirling_number1(n+1,n+1-i) for i in (0..n))
for n in (0..10): [A088996(n,k) for k in (0..n)] # Peter Luschny, May 12 2013
A147626
Octo-factorial numbers (5).
Original entry on oeis.org
1, 6, 84, 1848, 55440, 2106720, 96909120, 5233092480, 324451733760, 22711621363200, 1771506466329600, 152349556104345600, 14320858273808486400, 1460727543928465612800, 160680029832131217408000, 18960243520191483654144000, 2388990683544126940422144000
Offset: 1
-
[n le 1 select 1 else (8*n-10)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,5,2*5!,8}];lst
Table[8^(n-1)*Pochhammer[3/4, n-1], {n,40}] (* G. C. Greubel, Oct 21 2022 *)
-
[8^(n-1)*rising_factorial(3/4, n-1) for n in range(1,40)] # G. C. Greubel, Oct 21 2022
Showing 1-10 of 12 results.
Comments