A045755
8-fold factorials: a(n) = Product_{k=0..n-1} (8*k+1).
Original entry on oeis.org
1, 1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625, 68586144251625, 5555477684381625, 494437513909964625, 47960438849266568625, 5035846079172989705625, 569050606946547836735625, 68855123440532288245010625, 8882310923828665183606370625
Offset: 0
-
List([0..20], n-> Product([0..n-1], j-> 8*j+1) ); # G. C. Greubel, Nov 11 2019
-
[1] cat [(&*[8*j+1: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
a := n->product(8*k+1), k=0..(n-1));
-
Table[8^n*Pochhammer[1/8, n], {n,0,20}] (* G. C. Greubel, Nov 11 2019 *)
-
a(n)=prod(k=0, n, 8*k+1);
-
[product( (8*j+1) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 11 2019
A051189
Octo-factorial numbers.
Original entry on oeis.org
1, 8, 128, 3072, 98304, 3932160, 188743680, 10569646080, 676457349120, 48704929136640, 3896394330931200, 342882701121945600, 32916739307706777600, 3423340888001504870400, 383414179456168545484800
Offset: 0
Shifted absolute values are column 1 of
A051187.
A049210
a(n) = -Product_{k=0..n} (8*k-1); octo-factorial numbers.
Original entry on oeis.org
1, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, 475493443425, 33760034483175, 2667042724170825, 232032717002861775, 22043108115271868625, 2270440135873002468375, 252018855081903273989625, 29990243754746489604765375, 3808760956852804179805202625
Offset: 0
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6),
A049209 (m=7), this sequence (m=8),
A049211 (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
m:=8; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..30]]; // G. C. Greubel, Feb 16 2022
-
FoldList[Times,1,8*Range[20]-1] (* Harvey P. Dale, Aug 03 2014 *)
CoefficientList[Series[(1-8*x)^(-7/8),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
a(n) = -prod(k=0, n, 8*k-1); \\ Michel Marcus, Jan 08 2015
-
m=8; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022
A048176
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -10, 1, 200, -30, 1, -6000, 1100, -60, 1, 240000, -50000, 3500, -100, 1, -12000000, 2740000, -225000, 8500, -150, 1, 720000000, -176400000, 16240000, -735000, 17500, -210, 1, -50400000000, 13068000000, -1313200000, 67690000, -1960000, 32200, -280, 1, 4032000000000, -1095840000000
Offset: 1
{1}; {-10,1}; {200,-30,1}; {-6000,1100,-60,1}; ... E(3,x) = 200*x-30*x^2+x^3.
- Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
First (m=1) (unsigned) column sequence is:
A051262(n-1). Row sums (signed triangle):
A049212(n-1)*(-1)^(n-1). Row sums (unsigned triangle):
A045757(n). b=8:
A051187, b=9:
A051231.
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (-1)^n*n!*10^n, 9); # Peter Luschny, Jan 28 2016
-
rows = 9;
t = Table[(-1)^n*n!*10^n, {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
A051231
Generalized Stirling number triangle of the first kind.
Original entry on oeis.org
1, -9, 1, 162, -27, 1, -4374, 891, -54, 1, 157464, -36450, 2835, -90, 1, -7085880, 1797714, -164025, 6885, -135, 1, 382637520, -104162436, 10655064, -535815, 14175, -189, 1, -24106163760, 6944870988, -775431468, 44411409, -1428840, 26082, -252, 1
Offset: 1
Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-9, 1;
162, -27, 1;
-4374, 891, -54, 1;
157464, -36450, 2835, -90, 1;
-7085880, 1797714, -164025, 6885, -135, 1;
...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x-9*j) = 162*x - 27*x^2 + x^3. [Edited by _Petros Hadjicostas_, Jun 06 2020]
- D. S. Mitrinovic, Sur une relation de récurrence relative aux nombres de Bernoulli, Comptes rendus de l'Académie des sciences de Paris, t. 250 (1960), 4266-4267.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les polynômes de Stirling, Bulletin de la Société des mathématiciens et physiciens de la R. P. de Serbie, t. 10 (1958), 43-49.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieux, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 43 (1960), 1-63.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur une classe de nombres se rattachant aux nombres de Stirling--Appendice: Table des nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 60 (1961), 1-15 and 17-62.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling. V, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 132/142 (1965), 1-22.
- Niels Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
- Wikipedia, Dragoslav Mitrinovic.
First (m=1) column sequence is
A051232(n-1).
Row sums (signed triangle):
A049211(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A045756(n).
Showing 1-5 of 5 results.
Comments