cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A034977 Expansion of 1/(1-64*x)^(1/8), related to octo-factorial numbers A045755.

Original entry on oeis.org

1, 8, 288, 13056, 652800, 34467840, 1884241920, 105517547520, 6014500208640, 347504456499200, 20294260259553280, 1195516422562775040, 70933974405391319040, 4234212626044897198080, 254052757562693831884800, 15310912855778348268257280, 926310227774590070229565440
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 8^(n-1) else 8*(8*n-15)*Self(n-1)/(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-64x)^(1/8),{x,0,30}],x] (* Harvey P. Dale, May 20 2011 *)
  • SageMath
    [2^(6*n)*rising_factorial(1/8,n)/factorial(n) for n in range(40)] # G. C. Greubel, Oct 21 2022

Formula

a(n) = 8^n*A045755(n)/n!, n >= 1, where A045755(n) = (8*n-7)!^8 = Product_{j=1..n} (8*j-7).
G.f.: (1-64*x)^(-1/8).
D-finite with recurrence: n*a(n) = 8*(8*n-7)*a(n-1). - R. J. Mathar, Jan 28 2020
a(n) ~ 2^(6*n) * n^(-7/8) / Gamma(1/8). - Amiram Eldar, Aug 18 2025

Extensions

a(11) corrected by Harvey P. Dale, May 20 2011

A034996 Related to octo-factorial numbers A045755.

Original entry on oeis.org

1, 36, 1632, 81600, 4308480, 235530240, 13189693440, 751812526080, 43438057062400, 2536782532444160, 149439552820346880, 8866746800673914880, 529276578255612149760, 31756594695336728985600, 1913864106972293533532160, 115788778471823758778695680, 7029059963701301121153761280
Offset: 1

Views

Author

Keywords

Comments

Convolution of A034977(n-1) with A025753(n), n >= 1.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[(-1 + (1 - 64*x)^(-1/8))/8, {x, 0, 14}], x] (* Michael De Vlieger, Oct 13 2019 *)

Formula

a(n) = 8^(n-1)*A045755(n)/n!, where A045755(n) = (8*n-7)!^8 = Product_{j=1..n} (8*j-7).
G.f.: (-1+(1-64*x)^(-1/8))/8.
D-finite with recurrence: n*a(n) + 8*(-8*n+7)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
a(n) ~ 8^(2*n-1) * n^(-7/8) / Gamma(1/8). - Amiram Eldar, Aug 18 2025

A053114 a(n) = ((8*n+9)(!^8))/9, related to A045755 ((8*n+1)(!^8) octo- or 8-factorials).

Original entry on oeis.org

1, 17, 425, 14025, 575025, 28176225, 1606044825, 104392913625, 7620682694625, 617275298264625, 54937501545551625, 5328937649918507625, 559538453241443300625, 63227845216283092970625
Offset: 0

Views

Author

Keywords

Comments

Row m=9 of the array A(9; m,n) := ((8*n+m)(!^8))/m(!^8), m >= 0, n >= 0.

Crossrefs

Cf. A051189, A045755, A034908-12, A034975-6 (rows m=0..8).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-8*x)^(17/8))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 16, 5!, 8}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 8*x)^(17/8), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-8*x)^(17/8))) \\ G. C. Greubel, Aug 16 2018
    

Formula

a(n) = ((8*n+9)(!^8))/9(!^8) = A045755(n+2)/9.
E.g.f.: 1/(1-8*x)^(17/8).
G.f.: 1/(1-17x/(1-8x/(1-25x/(1-16x/(1-33x/(1-24x/(1-41x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012

A132393 Triangle of unsigned Stirling numbers of the first kind (see A048994), read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 10 2007, Oct 15 2008, Oct 17 2008

Keywords

Comments

Another name: Triangle of signless Stirling numbers of the first kind.
Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.
A094645*A007318 as infinite lower triangular matrices.
Row sums are the factorial numbers. - Roger L. Bagula, Apr 18 2008
Exponential Riordan array [1/(1-x), log(1/(1-x))]. - Ralf Stephan, Feb 07 2014
Also the Bell transform of the factorial numbers (A000142). For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015
This is the lower triagonal Sheffer matrix of the associated or Jabotinsky type |S1| = (1, -log(1-x)) (see the W. Lang link under A006232 for the notation and references). This implies the e.g.f.s given below. |S1| is the transition matrix from the monomial basis {x^n} to the rising factorial basis {risefac(x,n)}, n >= 0. - Wolfdieter Lang, Feb 21 2017
T(n, k), for n >= k >= 1, is also the total volume of the n-k dimensional cell (polytope) built from the n-k orthogonal vectors of pairwise different lengths chosen from the set {1, 2, ..., n-1}. See the elementary symmetric function formula for T(n, k) and an example below. - Wolfdieter Lang, May 28 2017
From Wolfdieter Lang, Jul 20 2017: (Start)
The compositional inverse w.r.t. x of y = y(t;x) = x*(1 - t(-log(1-x)/x)) = x + t*log(1-x) is x = x(t;y) = ED(y,t) := Sum_{d>=0} D(d,t)*y^(d+1)/(d+1)!, the e.g.f. of the o.g.f.s D(d,t) = Sum_{m>=0} T(d+m, m)*t^m of the diagonal sequences of the present triangle. See the P. Bala link for a proof (there d = n-1, n >= 1, is the label for the diagonals).
This inversion gives D(d,t) = P(d, t)/(1-t)^(2*d+1), with the numerator polynomials P(d, t) = Sum_{m=0..d} A288874(d, m)*t^m. See an example below. See also the P. Bala formula in A112007. (End)
For n > 0, T(n,k) is the number of permutations of the integers from 1 to n which have k visible digits when viewed from a specific end, in the sense that a higher value hides a lower one in a subsequent position. - Ian Duff, Jul 12 2019

Examples

			Triangle T(n,k) begins:
  1;
  0,    1;
  0,    1,     1;
  0,    2,     3,     1;
  0,    6,    11,     6,    1;
  0,   24,    50,    35,   10,    1;
  0,  120,   274,   225,   85,   15,   1;
  0,  720,  1764,  1624,  735,  175,  21,  1;
  0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1;
  ...
---------------------------------------------------
Production matrix is
  0, 1
  0, 1, 1
  0, 1, 2,  1
  0, 1, 3,  3,  1
  0, 1, 4,  6,  4,  1
  0, 1, 5, 10, 10,  5,  1
  0, 1, 6, 15, 20, 15,  6, 1
  0, 1, 7, 21, 35, 35, 21, 7, 1
  ...
From _Wolfdieter Lang_, May 09 2017: (Start)
Three term recurrence: 50 = T(5, 2) = 1*6 + (5-1)*11 = 50.
Recurrence from the Sheffer a-sequence [1, 1/2, 1/6, 0, ...]: 50 = T(5, 2) = (5/2)*(binomial(1, 1)*1*6 + binomial(2, 1)*(1/2)*11 + binomial(3, 1)*(1/6)*6 + 0) = 50. The vanishing z-sequence produces the k=0 column from T(0, 0) = 1. (End)
Elementary symmetric function T(4, 2) = sigma^{(3)}_2 = 1*2 + 1*3 + 2*3 = 11. Here the cells (polytopes) are 3 rectangles with total area 11. - _Wolfdieter Lang_, May 28 2017
O.g.f.s of diagonals: d=2 (third diagonal) [0, 6, 50, ...] has D(2,t) = P(2, t)/(1-t)^5, with P(2, t) = 2 + t, the n = 2 row of A288874. - _Wolfdieter Lang_, Jul 20 2017
Boas-Buck recurrence for column k = 2 and n = 5: T(5, 2) = (5!*2/3)*((3/8)*T(2,2)/2! + (5/12)*T(3,2)/3! + (1/2)*T(4,2)/4!) = (5!*2/3)*(3/16 + (5/12)*3/3! + (1/2)*11/4!) = 50. The beta sequence begins: {1/2, 5/12, 3/8, ...}. - _Wolfdieter Lang_, Aug 11 2017
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 31, 187, 441, 996.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., Table 259, p. 259.
  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150

Crossrefs

Essentially a duplicate of A048994. Cf. A008275, A008277, A112007, A130534, A288874, A354795.

Programs

  • Haskell
    a132393 n k = a132393_tabl !! n !! k
    a132393_row n = a132393_tabl !! n
    a132393_tabl = map (map abs) a048994_tabl
    -- Reinhard Zumkeller, Nov 06 2013
    
  • Maple
    a132393_row := proc(n) local k; seq(coeff(expand(pochhammer (x,n)),x,k),k=0..n) end: # Peter Luschny, Nov 28 2010
  • Mathematica
    p[t_] = 1/(1 - t)^x; Table[ ExpandAll[(n!)SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[(n!)* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 18 2008 *)
    Flatten[Table[Abs[StirlingS1[n,i]],{n,0,10},{i,0,n}]] (* Harvey P. Dale, Feb 04 2014 *)
  • Maxima
    create_list(abs(stirling1(n,k)),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    column(n,k) = my(v1, v2); v1 = vector(n-1, i, 0); v2 = vector(n, i, 0); v2[1] = 1; for(i=1, n-1, v1[i] = (i+k)*(i+k-1)/2*v2[i]; for(j=1, i-1, v1[j] *= (i-j)*(i+k)/(i-j+2)); v2[i+1] = vecsum(v1)/i); v2 \\ generates n first elements of the k-th column starting from the first nonzero element. - Mikhail Kurkov, Mar 05 2025

Formula

T(n,k) = T(n-1,k-1)+(n-1)*T(n-1,k), n,k>=1; T(n,0)=T(0,k); T(0,0)=1.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 13 2007
Expand 1/(1-t)^x = Sum_{n>=0}p(x,n)*t^n/n!; then the coefficients of the p(x,n) produce the triangle. - Roger L. Bagula, Apr 18 2008
Sum_{k=0..n} T(n,k)*2^k*x^(n-k) = A000142(n+1), A000165(n), A008544(n), A001813(n), A047055(n), A047657(n), A084947(n), A084948(n), A084949(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Sep 18 2008
a(n) = Sum_{k=0..n} T(n,k)*3^k*x^(n-k) = A001710(n+2), A001147(n+1), A032031(n), A008545(n), A047056(n), A011781(n), A144739(n), A144756(n), A144758(n) for x=1,2,3,4,5,6,7,8,9,respectively. - Philippe Deléham, Sep 20 2008
Sum_{k=0..n} T(n,k)*4^k*x^(n-k) = A001715(n+3), A002866(n+1), A007559(n+1), A047053(n), A008546(n), A049308(n), A144827(n), A144828(n), A144829(n) for x=1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 21 2008
Sum_{k=0..n} x^k*T(n,k) = x*(1+x)*(2+x)*...*(n-1+x), n>=1. - Philippe Deléham, Oct 17 2008
From Wolfdieter Lang, Feb 21 2017: (Start)
E.g.f. k-th column: (-log(1 - x))^k, k >= 0.
E.g.f. triangle (see the Apr 18 2008 Baluga comment): exp(-x*log(1-z)).
E.g.f. a-sequence: x/(1 - exp(-x)). See A164555/A027642. The e.g.f. for the z-sequence is 0. (End)
From Wolfdieter Lang, May 28 2017: (Start)
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, for n >= 0, are R(n, x) = risefac(x,n-1) := Product_{j=0..n-1} x+j, with the empty product for n=0 put to 1. See the Feb 21 2017 comment above. This implies:
T(n, k) = sigma^{(n-1)}_(n-k), for n >= k >= 1, with the elementary symmetric functions sigma^{(n-1)}_m of degree m in the n-1 symbols 1, 2, ..., n-1, with binomial(n-1, m) terms. See an example below.(End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!*k/(n - k)) * Sum_{p=k..n-1} beta(n-1-p)*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017
T(n,k) = Sum_{j=k..n} j^(j-k)*binomial(j-1, k-1)*A354795(n,j) for n > 0. - Mélika Tebni, Mar 02 2023
n-th row polynomial: n!*Sum_{k = 0..2*n} (-1)^k*binomial(-x, k)*binomial(-x, 2*n-k) = n!*Sum_{k = 0..2*n} (-1)^k*binomial(1-x, k)*binomial(-x, 2*n-k). - Peter Bala, Mar 31 2024
From Mikhail Kurkov, Mar 05 2025: (Start)
For a general proof of the formulas below via generating functions, see Mathematics Stack Exchange link.
Recursion for the n-th row (independently of other rows): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} binomial(-k,j)*T(n,k+j-1)*(-1)^j for 1 <= k < n with T(n,n) = 1.
Recursion for the k-th column (independently of other columns): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} (j-2)!*binomial(n,j)*T(n-j+1,k) for 1 <= k < n with T(n,n) = 1 (see Fedor Petrov link). (End)

A008542 Sextuple factorial numbers: Product_{k=0..n-1} (6*k+1).

Original entry on oeis.org

1, 1, 7, 91, 1729, 43225, 1339975, 49579075, 2131900225, 104463111025, 5745471106375, 350473737488875, 23481740411754625, 1714167050058087625, 135419196954588922375, 11510631741140058401875, 1047467488443745314570625, 101604346379043295513350625
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n), n>=1, enumerates increasing heptic (7-ary) trees with n vertices. - Wolfdieter Lang, Sep 14 2007; see a D. Callan comment on A007559 (number of increasing quarterny trees).

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> (6*k+1) )); # G. C. Greubel, Aug 17 2019
  • Magma
    [1] cat [(&*[(6*k+1): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    a := n -> mul(6*k+1, k=0..n-1);
    G(x):=(1-6*x)^(-1/6): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..15); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    Table[Product[(6*k+1), {k,0,n-1}], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008, modified by G. C. Greubel, Aug 17 2019 *)
    FoldList[Times, 1, 6Range[0, 20] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
    Table[6^n*Pochhammer[1/6, n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    a(n)=prod(k=1,n-1,6*k+1) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Sage
    [product((6*k+1) for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 17 2019
    

Formula

E.g.f.: (1-6*x)^(-1/6).
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(1/6)^-1*n^(-1/3)*6^n*e^-n*n^n*{1 + 1/72*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Sum_{k=0..n} (-6)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1+x/(1-7x/(1-6x/(1-13x/(1-12x/(1-19x/(1-18x/(1-25x/(1-24x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-5)^n*Sum_{k=0..n} (6/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(6*k+1)/(1 - x*(6*k+6)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
a(n) = A085158(6*n-5). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-6*n+5)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/6^5)^(1/6)*(Gamma(1/6) - Gamma(1/6, 1/6)). - Amiram Eldar, Dec 18 2022

A045754 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).

Original entry on oeis.org

1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000, 9824229050742220308480000, 1110137882733870894858240000
Offset: 0

Views

Author

Keywords

Crossrefs

See also A113134.
Unsigned row sums of triangle A051186 (scaled Stirling1).
First column of triangle A132056 (S2(8)).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019
  • Magma
    [1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    f := n->product( (7*k+1), k=0..(n-1));
    G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)
  • PARI
    a(n)=prod(k=0,n-1,7*k+1)
    
  • Sage
    [7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Sum_{k=0..n} (-7)^(n-k)*A048994(n, k), where A048994 = Stirling-1 numbers.
E.g.f.: (1-7*x)^(-1/7).
G.f.: 1/(1-x/(1-7*x/(1-8*x/(1-14*x/(1-15*x/(1-21*x/(1-22*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-6)^n*Sum_{k=0..n} (7/6)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0), where G(k)= 1 - x*(7*k+1)/(1 - x*(7*k+7)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k+1)/(x*(7*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 7^n * Gamma(n + 1/7) / Gamma(1/7). - Artur Jasinski, Aug 23 2016
a(n) = A114799(7n-6). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+6)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^6)^(1/7)*(Gamma(1/7) - Gamma(1/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 16 2008 at the suggestion of M. F. Hasler, Oct 14 2008
Corrected by Zerinvary Lajos, Apr 03 2009

A223511 Triangle T(n,k) represents the coefficients of (x^9*d/dx)^n, where n=1,2,3,...;generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.

Original entry on oeis.org

1, 9, 1, 153, 27, 1, 3825, 855, 54, 1, 126225, 32895, 2745, 90, 1, 5175225, 1507815, 150930, 6705, 135, 1, 253586025, 80565975, 9205245, 499590, 13860, 189, 1, 14454403425, 4926412575, 623675430, 39180645, 1345050, 25578, 252, 1
Offset: 1

Views

Author

Udita Katugampola, Mar 23 2013

Keywords

Comments

Also the Bell transform of A045755(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			1;
9,1;
153,27,1;
3825,855,54,1;
126225,32895,2745,90,1;
5175225,1507815,150930,6705,135,1;
253586025,80565975,9205245,499590,13860,189,1;
14454403425,4926412575,623675430,39180645,1345050,25578,252,1;
		

Crossrefs

Programs

  • Maple
    b[0]:=g(x):
    for j from 1 to 10 do
    b[j]:=simplify(x^9*diff(b[j-1],x$1);
    end do;
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> mul(8*k+1, k=0..n), 10); # Peter Luschny, Jan 29 2016
  • Mathematica
    rows = 8;
    t = Table[Product[8k+1, {k, 0, n}], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)

A045756 Expansion of e.g.f. (1-9*x)^(-1/9), 9-factorial numbers.

Original entry on oeis.org

1, 1, 10, 190, 5320, 196840, 9054640, 498005200, 31872332800, 2326680294400, 190787784140800, 17361688356812800, 1736168835681280000, 189242403089259520000, 22330603564532623360000, 2835986652695643166720000, 385694184766607470673920000, 55925656791158083247718400000
Offset: 0

Views

Author

Keywords

Comments

Nine-fold factorials of numbers 9k+1, k = 0, 1, 2, ... - M. F. Hasler, Feb 14 2020

Crossrefs

Cf. A008542, A048994, A114806 (9-fold factorials), A132393.
Cf. k-fold factorials : A000142 ("1-fold"), A001147 (2-fold), A007559 (3), A007696 (4), A008548 (5), A008542 (6), A045754 (7), A045755 (8), A144773 (10), A256268 (combined table).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 9*j+1) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [1] cat [(&*[9*j+1: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq( mul(9*j+1, j=0..n-1), n=0..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Table[9^n*Pochhammer[1/9, n], {n,0,20}] (* G. C. Greubel, Nov 11 2019 *)
  • PARI
    vector(21, n, prod(j=0,n-2, 9*j+1) ) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [product( (9*j+1) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n+1) = (9*n+1)(!^9) = Product_{k=0..n-1} (9*k+1), n >= 0.
E.g.f. (1-9*x)^(-1/9).
D-finite with recurrence: a(n) +(-9*n+8)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
a(n) = A114806(9n-8). - M. F. Hasler, Feb 14 2020
a(n) = Sum_{k = 0..n} (-9)^(n - k) * A048994(n, k) = Sum_{k = 0..n} 9^(n - k) * A132393(n, k). Philippe Deléham, Sep 20 2008
a(n) = (-8)^n * sum_{k = 0..n} (9/8)^k * s(n + 1, n + 1 - k), where s(n, k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) = 9^n * Gamma(n + 1/9) / Gamma(1/9). - Artur Jasinski Aug 23 2016
a(n) ~ sqrt(2 * Pi) * 9^n * n^(n - 7/18)/(Gamma(1/9) * exp(n)). - Ilya Gutkovskiy, Sep 10 2016
Sum_{n>=0} 1/a(n) = 1 + (e/9^8)^(1/9)*(Gamma(1/9) - Gamma(1/9, 1/9)). - Amiram Eldar, Dec 21 2022

Extensions

a(0)=1 inserted; merged with A144772; formulas and programs changed accordingly by Georg Fischer, Feb 15 2020

A034910 One quarter of octo-factorial numbers.

Original entry on oeis.org

1, 12, 240, 6720, 241920, 10644480, 553512960, 33210777600, 2258332876800, 171633298636800, 14417197085491200, 1326382131865190400, 132638213186519040000, 14324927024144056320000, 1661691534800710533120000, 206049750315288106106880000
Offset: 1

Views

Author

Keywords

Comments

A034910 occurs in connection with the Vandermonde permanent of (1,3,5,7,9,...); see the Mathematica section of A203516. - Clark Kimberling, Jan 03 2012

Examples

			G.f. = x + 12*x^2 + 240*x^3 + 6720*x^4 + 241920*x^5 + 10644480*x^6 + ...
		

Crossrefs

Programs

  • Magma
    [n le 2 select 12^(n-1) else (7*n-3)*Self(n-1) +4*(n-1)*(2*n-3)*Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 20 2022
    
  • Maple
    [seq((2*n)!/(n)!*2^(n-2), n=1..14)]; # Zerinvary Lajos, Sep 25 2006
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 5!, 8}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    a[ n_] := Pochhammer[ 1/2, n] 8^n / 4; (* Michael Somos, Feb 04 2015 *)
  • PARI
    {a(n) = if( n==1, 1, n>1, a(n-1) * (8*n - 4), a(n+1) / (8*n + 4))}; /* Michael Somos, Feb 04 2015 */
    
  • SageMath
    [2^(3*n-2)*rising_factorial(1/2, n) for n in range(1,40)] # G. C. Greubel, Oct 20 2022

Formula

4*a(n) = (8*n-4)(!^8) = Product_{j=1..n} (8*j-4) = 4^n*A001147(n) = 2^n*(2*n)!/n!, A001147(n) = (2*n-1)!!.
E.g.f. (-1+(1-8*x)^(-1/2))/4.
a(n) = A090802(2n-1, n). - Ross La Haye, Oct 18 2005
a(n) = ((2*n)!/n!)*2^(n-2). - Zerinvary Lajos, Sep 25 2006
G.f.: x/(1-12*x/(1-8*x/(1-20*x/(1-16*x/(1-28*x/(1-24*x/(1-36*x/(1-32*x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2011
From Peter Bala, Feb 01 2015: (Start)
Recurrence equation: a(n) = (7*n - 3)*a(n-1) + 4*(n - 1)*(2*n - 3)*a(n-2).
The sequence b(n) := a(n)* Sum_{k = 0..n-1} (-1)^k/( 2^k*(2*k + 1)*binomial(2*k,k) ) beginning [1, 11, 222, 6210, 223584, ...] satisfies the same recurrence. This leads to the finite continued fraction expansion b(n)/a(n) = 1/(1 + 1/(11 + 24/(18 + 60/(25 + ... + 4*(n - 1)*(2*n - 3)/(7*n - 3) )))) for n >= 3.
Letting n tend to infinity gives the continued fraction expansion Sum_{k>=0} (-1)^k/( 2^k*(2*k + 1)*binomial(2*k,k) ) = (4/3)*log(2) = 1/(1 + 1/(11 + 24/(18 + 60/(25 + ... + 4*(n - 1)*(2*n - 3)/((7*n - 3) + ... ))))). (End)
From Peter Bala, Feb 03 2015: (Start)
This sequence satisfies several other second order recurrence equations leading to some continued fraction expansions.
1) a(n) = (9*n + 4)*a(n-1) - 4*n*(2*n - 1)*a(n-2).
This recurrence is also satisfied by the (integer) sequence c(n) := a(n)*Sum_{k = 0..n} 1/( 2^k*(2*k + 1)*binomial(2*k,k) ). From this we can obtain the continued fraction expansion Sum_{k >= 0} 1/( 2^k*(2*k + 1)*binomial(2*k,k) ) = (8/sqrt(7))*arctan(sqrt(7)/7) = (8/sqrt(7))*A195699 = 1 + 1/(12 - 24/(22 - 60/(31 - ... - 4*n*(2*n - 1)/((9*n + 4) - ... )))).
2) a(n) = (12*n + 2)*a(n-1) - 8*(2*n - 1)^2*a(n-2).
This recurrence is also satisfied by the (integer) sequence d(n) := a(n)*Sum_{k = 0..n} 1/( (2*k + 1)*2^k ). From this we can obtain the continued fraction expansion Sum_{k >= 0} 1/( (2*k + 1)*2^k ) = (1/sqrt(2))*log(3 + 2*sqrt(2)) = 1 + 2/(12 - 8*3^2/(26 - 8*5^2/(38 - ... - 8*(2*n - 1)^2/((12*n + 2) - ... )))). Cf. A002391.
3) a(n) = (4*n + 6)*a(n-1) + 8*(2*n - 1)^2*a(n-2).
This recurrence is also satisfied by the (integer) sequence e(n) := a(n)*Sum_{k = 0..n} (-1)^k/( (2*k + 1)*2^k ). From this we can obtain the continued fraction expansion Sum_{k >= 0} (-1)^k/( (2*k + 1)*2^k ) = (1/sqrt(2))*arctan(sqrt(2)/2) = 1 - 2/(12 + 8*3^2/(14 + 8*5^2/(18 + ... + 8*(2*n - 1)^2/((4*n + 6) + ... )))). Cf. A073000. (End)
a(n) = (-1)^n / (16*a(-n)) for all n in Z. - Michael Somos, Feb 04 2015
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = e^(1/8)*sqrt(2*Pi)*erf(1/(2*sqrt(2))), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = e^(-1/8)*sqrt(2*Pi)*erfi(1/(2*sqrt(2))), where erfi is the imaginary error function. (End)

A114799 Septuple factorial, 7-factorial, n!7, n!!!!!!!, a(n) = n*a(n-7) if n > 1, else 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 18, 30, 44, 60, 78, 98, 120, 288, 510, 792, 1140, 1560, 2058, 2640, 6624, 12240, 19800, 29640, 42120, 57624, 76560, 198720, 379440, 633600, 978120, 1432080, 2016840, 2756160, 7352640, 14418720, 24710400, 39124800
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Comments

Many of the terms yield multifactorial primes a(n) + 1, e.g.: a(2) + 1 = 3, a(4) + 1 = 5, a(6) + 1 = 7, a(9) + 1 = 19, a(10) + 1 = 31, a(12) + 1 = 61, a(13) + 1 = 79, a(24) + 1 = 12241, a(25) + 1 = 19801, a(26) + 1 = 29641, a(29) + 1 = 76561, a(31) + 1 = 379441, a(35) + 1 = 2016841, a(36) + 1 = 2756161, ...
Equivalently, product of all positive integers <= n congruent to n (mod 7). - M. F. Hasler, Feb 23 2018

Examples

			a(40) = 40 * a(40-7) = 40 * a(33) = 40 * (33*a(26)) = 40 * 33 * (26*a(19)) = 40 * 33 * 26 * (19*a(12)) = 40 * 33 * 26 * 19 * (12*a(5)) = 40 * 33 * 26 * 19 * 12 5 = 39124800.
		

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-7);
        fi;
      end;
    List([0..40], n-> a(n) ); # G. C. Greubel, Aug 20 2019
  • Magma
    b:= func< n | (n lt 8) select n else n*Self(n-7) >;
    [1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    A114799 := proc(n)
        option remember;
        if n < 1 then
            1;
        else
            n*procname(n-7) ;
        end if;
    end proc:
    seq(A114799(n),n=0..40) ; # R. J. Mathar, Jun 23 2014
    A114799 := n -> product(n-7*k,k=0..(n-1)/7); # M. F. Hasler, Feb 23 2018
  • Mathematica
    a[n_]:= If[n<1, 1, n*a[n-7]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    A114799(n,k=7)=prod(j=0,(n-1)\k,n-j*k) \\ M. F. Hasler, Feb 23 2018
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-7)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 20 2019
    

Formula

a(n) = 1 for n <= 1, else a(n) = n*a(n-7).
Sum_{n>=0} 1/a(n) = A288094. - Amiram Eldar, Nov 10 2020

Extensions

Edited by M. F. Hasler, Feb 23 2018
Showing 1-10 of 29 results. Next