A034977 Expansion of 1/(1-64*x)^(1/8), related to octo-factorial numbers A045755.
1, 8, 288, 13056, 652800, 34467840, 1884241920, 105517547520, 6014500208640, 347504456499200, 20294260259553280, 1195516422562775040, 70933974405391319040, 4234212626044897198080, 254052757562693831884800, 15310912855778348268257280, 926310227774590070229565440
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Armin Straub, Victor H. Moll, and Tewodros Amdeberhan, The p-adic valuation of k-central binomial coefficients, Acta Arith. 140 (1) (2009), 31-41, eq. (1.10).
- Index entries for sequences related to factorial numbers.
Programs
-
Magma
[n le 1 select 8^(n-1) else 8*(8*n-15)*Self(n-1)/(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
-
Mathematica
CoefficientList[Series[1/(1-64x)^(1/8),{x,0,30}],x] (* Harvey P. Dale, May 20 2011 *)
-
SageMath
[2^(6*n)*rising_factorial(1/8,n)/factorial(n) for n in range(40)] # G. C. Greubel, Oct 21 2022
Formula
G.f.: (1-64*x)^(-1/8).
D-finite with recurrence: n*a(n) = 8*(8*n-7)*a(n-1). - R. J. Mathar, Jan 28 2020
a(n) ~ 2^(6*n) * n^(-7/8) / Gamma(1/8). - Amiram Eldar, Aug 18 2025
Extensions
a(11) corrected by Harvey P. Dale, May 20 2011
Comments