A028421
Triangle read by rows: T(n, k) = (k+1)*A132393(n+1, k+1), for 0 <= k <= n.
Original entry on oeis.org
1, 1, 2, 2, 6, 3, 6, 22, 18, 4, 24, 100, 105, 40, 5, 120, 548, 675, 340, 75, 6, 720, 3528, 4872, 2940, 875, 126, 7, 5040, 26136, 39396, 27076, 9800, 1932, 196, 8, 40320, 219168, 354372, 269136, 112245, 27216, 3822, 288, 9
Offset: 0
Peter Wiggen (wiggen(AT)math.psu.edu)
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------------------------------------
0: 1
1: 1 2
2: 2 6 3
3: 6 22 18 4
4: 24 100 105 40 5
5: 120 548 675 340 75 6
6: 720 3528 4872 2940 875 126 7
7: 5040 26136 39396 27076 9800 1932 196 8
8: 40320 219168 354372 269136 112245 27216 3822 288 9
9: 362880 2053152 3518100 2894720 1346625 379638 66150 6960 405 10
10: 3628800 21257280 38260728 33638000 17084650 5412330 1104411 145200 11880 550 11
... - _Wolfdieter Lang_, Nov 23 2018
Row sums give
A000254(n+1), n >= 0.
The asymptotic expansion of E(x,m=2,n) leads to
A000254 (n=1),
A001705 (n=2),
A001711 (n=3),
A001716 (n=4),
A001721 (n=5),
A051524 (n=6),
A051545 (n=7),
A051560 (n=8),
A051562 (n=9),
A051564 (n=10),
A093905 (triangle) and
A165674 (triangle).
-
A028421 := proc(n,k) (-1)^(n+k)*(k+1)*Stirling1(n+1,k+1) end:
seq(seq(A028421(n,k), k=0..n), n=0..8);
# Johannes W. Meijer, Oct 07 2009, Revised Sep 09 2012
egf := (1 - t)^(-x - 1)*(1 - x*log(1 - t)):
ser := series(egf, t, 16): coefft := n -> expand(coeff(ser,t,n)):
seq(seq(n!*coeff(coefft(n), x, k), k = 0..n), n = 0..8); # Peter Luschny, Jun 12 2022
-
f[n_, k_] = (k + 1) StirlingS1[n + 1, k + 1] // Abs; Flatten[Table[f[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 01 2011, after formula *)
-
# uses[riordan_square from A321620]
riordan_square(-ln(1 - x), 10, True) # Peter Luschny, Jan 03 2019
A269953
Triangle read by rows: T(n, k) = Sum_{j=0..n} binomial(-j-1, -n-1)*S1(j, k) where S1 are the Stirling cycle numbers A132393.
Original entry on oeis.org
1, -1, 1, 1, -1, 1, -1, 2, 0, 1, 1, 0, 5, 2, 1, -1, 9, 15, 15, 5, 1, 1, 35, 94, 85, 40, 9, 1, -1, 230, 595, 609, 315, 91, 14, 1, 1, 1624, 4458, 4844, 2779, 924, 182, 20, 1, -1, 13209, 37590, 43238, 26817, 9975, 2310, 330, 27, 1
Offset: 0
Triangle starts:
1;
-1, 1;
1, -1, 1;
-1, 2, 0, 1;
1, 0, 5, 2, 1;
-1, 9, 15, 15, 5, 1;
1, 35, 94, 85, 40, 9, 1.
-
A269953 := (n,k) -> add(binomial(-j-1,-n-1)*abs(Stirling1(j,k)), j=0..n):
seq(print(seq(A269953(n, k), k=0..n)), n=0..9);
# Alternative:
egf := exp(-t)*(1-t)^(-x): ser := series(egf, t, 12): p := n -> coeff(ser, t, n):
seq(n!*seq(coeff(p(n), x, k), k=0..n), n=0..9); # Peter Luschny, Oct 28 2019
-
Flatten[Table[Sum[Binomial[-j-1,-n-1] Abs[StirlingS1[j,k]], {j,0,n}], {n,0,9},{k,0,n}]]
(* Or: *)
p [n_] := HypergeometricU[-n, 1 - n - x, -1];
Table[CoefficientList[p[n], x], {n, 0, 9}] (* Peter Luschny, Oct 28 2019 *)
A269951
Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j,-n)*S1(j,k), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 5, 5, 1, 0, 16, 23, 9, 1, 0, 65, 116, 65, 14, 1, 0, 326, 669, 470, 145, 20, 1, 0, 1957, 4429, 3634, 1415, 280, 27, 1, 0, 13700, 33375, 30681, 14084, 3535, 490, 35, 1, 0, 109601, 283072, 284066, 147532, 43939, 7756, 798, 44, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 5, 5, 1;
0, 16, 23, 9, 1;
0, 65, 116, 65, 14, 1;
0, 326, 669, 470, 145, 20, 1;
-
A269951 := (n,k) -> add((-1)^(n-j)*binomial(-j,-n)*abs(Stirling1(j,k)), j=0..n):
seq(seq(A269951(n,k), k=0..n), n=0..9);
-
Flatten[ Table[ Sum[(-1)^(n-j) Binomial[-j,-n] Abs[StirlingS1[j,k]], {j,0,n}], {n,0,9}, {k,0,n}]]
A254882
Triangle read by rows, T(n,k) = Sum_{j=0..k-1} S(n,j+1)*S(n,k-j) where S denotes the Stirling cycle numbers A132393, T(0,0)=1, n>=0, 0<=k<=2n-1.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 1, 0, 4, 12, 13, 6, 1, 0, 36, 132, 193, 144, 58, 12, 1, 0, 576, 2400, 4180, 3980, 2273, 800, 170, 20, 1, 0, 14400, 65760, 129076, 143700, 100805, 46710, 14523, 3000, 395, 30, 1, 0, 518400, 2540160, 5450256, 6787872, 5482456, 3034920, 1184153
Offset: 0
[1]
[0, 1]
[0, 1, 2, 1]
[0, 4, 12, 13, 6, 1]
[0, 36, 132, 193, 144, 58, 12, 1]
[0, 576, 2400, 4180, 3980, 2273, 800, 170, 20, 1]
-
a := n -> (x^n*pochhammer(1+1/x,n))^2:
c := (n,k) -> coeff(expand(a(n)),x,n-k):
for n from 0 to 5 do: `if`(n=0,[1],[seq(c(n-1,k),k=-n..n-1)]) od;
# Second program, a special case of the recurrence given in A246117:
t := proc(n,k) option remember; if n=0 and k=0 then 1 elif
k <= 0 or k>n then 0 else iquo(n,2)*t(n-1,k)+t(n-1,k-1) fi end:
A254882 := (n,k) -> `if`(n=0,1,t(2*n-1,k)):
seq(print(seq(A254882(n,k), k=0..max(0,2*n-1))), n=0..5);
-
Flatten[{1,Table[Table[Sum[Abs[StirlingS1[n,j+1]] * Abs[StirlingS1[n,k-j]],{j,0,k-1}],{k,0,2*n-1}],{n,1,10}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
-
def A254882(n,k):
if n == 0: return 1
return sum(stirling_number1(n,j+1)*stirling_number1(n,k-j) for j in range(k))
for n in range (5): [A254882(n,k) for k in (0..max(0,2*n-1))]
A254881
Triangle read by rows, T(n,k) = sum(j=0..k-1, S(n+1,j+1)*S(n,k-j)) where S denotes the Stirling cycle numbers A132393, T(0,0)=1, n>=0, 0<=k<=2n.
Original entry on oeis.org
1, 0, 1, 1, 0, 2, 5, 4, 1, 0, 12, 40, 51, 31, 9, 1, 0, 144, 564, 904, 769, 376, 106, 16, 1, 0, 2880, 12576, 23300, 24080, 15345, 6273, 1650, 270, 25, 1, 0, 86400, 408960, 840216, 991276, 748530, 381065, 133848, 32523, 5370, 575, 36, 1, 0, 3628800, 18299520
Offset: 0
[1]
[0, 1, 1]
[0, 2, 5, 4, 1]
[0, 12, 40, 51, 31, 9, 1]
[0, 144, 564, 904, 769, 376, 106, 16, 1]
[0, 2880, 12576, 23300, 24080, 15345, 6273, 1650, 270, 25, 1]
For example in the case n=3 the polynomial (k^6+9*k^5+31*k^4+51*k^3+40*k^2+12*k)/3! generates the Lah numbers 0, 24, 240, 1200, 4200, 11760, 28224, ... (A253285).
The sequences
A000012,
A002378,
A083374,
A253285 are the Lah number rows generated by the polynomials divided by n! for n=0, 1, 2, 3 respectivly.
-
# This is a special case of the recurrence given in A246117.
t := proc(n,k) option remember; if n=0 and k=0 then 1 elif
k <= 0 or k>n then 0 else iquo(n,2)*t(n-1,k)+t(n-1,k-1) fi end:
A254881 := (n,k) -> t(2*n,k):
seq(print(seq(A254881(n,k), k=0..2*n)), n=0..5);
# Illustrating the comment:
restart: with(PolynomialTools): with(CurveFitting): for N from 0 to 5 do
CoefficientList(PolynomialInterpolation([seq([k,N!*((N+k)!/k!)*binomial(N+k-1,k-1)], k=0..2*N)], n), n) od;
-
Flatten[{1,Table[Table[Sum[Abs[StirlingS1[n+1,j+1]] * Abs[StirlingS1[n,k-j]],{j,0,k-1}],{k,0,2*n}],{n,1,10}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
-
def T(n,k):
if n == 0: return 1
return sum(stirling_number1(n+1,j+1)*stirling_number1(n,k-j) for j in range(k))
for n in range (6): [T(n,k) for k in (0..2*n)]
A269954
Triangle read by rows, T(n,k) = Sum_{j=0..n} C(-j,-n)*S1(j,k), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 2, 5, 3, 1, 0, 9, 20, 17, 6, 1, 0, 44, 109, 100, 45, 10, 1, 0, 265, 689, 694, 355, 100, 15, 1, 0, 1854, 5053, 5453, 3094, 1015, 196, 21, 1, 0, 14833, 42048, 48082, 29596, 10899, 2492, 350, 28, 1
Offset: 0
Triangle starts:
1;
0, 1;
0, 0, 1;
0, 1, 1, 1;
0, 2, 5, 3, 1;
0, 9, 20, 17, 6, 1;
0, 44, 109, 100, 45, 10, 1;
0, 265, 689, 694, 355, 100, 15, 1;
-
A269954 := (n, k) -> add(binomial(-j, -n)*abs(Stirling1(j, k)), j=0..n):
seq(seq(A269954(n, k), k=0..n), n=0..9);
-
Flatten[Table[Sum[Binomial[-j,-n] Abs[StirlingS1[j,k]],{j,0,n}], {n,0,9},{k,0,n}]]
-
T(n, k) = sum(j=0, n, (-1)^(n-j)*binomial(n-1, n-j)*abs(stirling(j, k)));
for(n=0, 9, for(k=0, n, print1(T(n, k), ", "))); \\ Seiichi Manyama, Feb 13 2025
A308305
a(n) = s(n,n) + s(n,n-1) + s(n,n-2), where s(n,k) are the unsigned Stirling numbers of the first kind (see A132393).
Original entry on oeis.org
1, 2, 6, 18, 46, 101, 197, 351, 583, 916, 1376, 1992, 2796, 3823, 5111, 6701, 8637, 10966, 13738, 17006, 20826, 25257, 30361, 36203, 42851, 50376, 58852, 68356, 78968, 90771, 103851, 118297, 134201, 151658, 170766, 191626, 214342, 239021, 265773, 294711
Offset: 1
- T. Zaslavsky, Perpendicular dissections of space. Discrete Comput. Geom. 27 (2002), no. 3, 303-351.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Alvaro Carbonero, Beth Anne Castellano, Gary Gordon, Charles Kulick, Karie Schmitz, and Brittany Shelton, Permutations of point sets in R_d, arXiv:2106.14140 [math.CO], 2021.
- I. J. Good and T. N. Tideman, Stirling numbers and a geometric structure from voting theory, J. Combinatorial Theory Ser. A 23 (1977), 34-45.
- T. Zaslavsky, Perpendicular dissections of space, arXiv:1001.4435 [math.CO], 2010. See equation (1.1) with d=2.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
The unsigned Stirling numbers of the first kind s(n,k) are given in
A132393.
The division of space formulation can be generalized to higher dimensions with use of
A008275 by Good and Tideman's work.
The maximum number of regions generated by pairwise perpendicular bisectors on a sphere is given by
A087645.
-
[(1/24)*(24 - 14*n + 21*n^2 - 10*n^3 + 3*n^4): n in [1..40]]; // Vincenzo Librandi, Jun 30 2019
-
Table[(1/24)(24 - 14 i + 21 i^2 - 10 i^3 + 3 i^4), {i, 40}]
-
Vec(x*(1 - 3*x + 6*x^2 - 2*x^3 + x^4) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Jun 30 2019
A354797
Triangle read by rows. T(n, k) = |Stirling1(n, k)| * Stirling2(n + k, n) = A132393(n, k) * A048993(n + k, n).
Original entry on oeis.org
1, 0, 1, 0, 3, 7, 0, 12, 75, 90, 0, 60, 715, 2100, 1701, 0, 360, 7000, 36750, 69510, 42525, 0, 2520, 72884, 595350, 1940295, 2692305, 1323652, 0, 20160, 814968, 9549120, 47030445, 109794300, 120023904, 49329280, 0, 181440, 9801000, 156008160, 1076453763, 3723239520, 6733767040, 6065579520, 2141764053
Offset: 0
Table T(n, k) begins:
[0] 1
[1] 0, 1
[2] 0, 3, 7
[3] 0, 12, 75, 90
[4] 0, 60, 715, 2100, 1701
[5] 0, 360, 7000, 36750, 69510, 42525
[6] 0, 2520, 72884, 595350, 1940295, 2692305, 1323652
[7] 0, 20160, 814968, 9549120, 47030445, 109794300, 120023904, 49329280
-
T := (n, k) -> abs(Stirling1(n, k))*Stirling2(n + k, n):
for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
A271700
Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j-1,-n-1)*S1(k,j), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 6, 16, 1, 4, 10, 30, 115, 1, 5, 15, 50, 205, 1021, 1, 6, 21, 77, 336, 1750, 10696, 1, 7, 28, 112, 518, 2814, 17766, 128472, 1, 8, 36, 156, 762, 4308, 28050, 207942, 1734447, 1, 9, 45, 210, 1080, 6342, 42528, 322860, 2746815, 25937683
Offset: 0
Triangle starts:
[1]
[1, 1]
[1, 2, 3]
[1, 3, 6, 16]
[1, 4, 10, 30, 115]
[1, 5, 15, 50, 205, 1021]
[1, 6, 21, 77, 336, 1750, 10696]
[1, 7, 28, 112, 518, 2814, 17766, 128472]
-
T := (n,k) -> add(abs(Stirling1(k,j))*binomial(-j-1,-n-1)*(-1)^(n-j),j=0..n);
seq(seq(T(n,k), k=0..n), n=0..9);
-
Flatten[Table[Sum[(-1)^(n-j)Binomial[-j-1,-n-1] Abs[StirlingS1[k,j]],{j,0,n}], {n,0,9},{k,0,n}]]
A368583
Table read by rows: T(n, k) = A124320(n + 1, k) * A132393(n, k).
Original entry on oeis.org
1, 0, 2, 0, 3, 12, 0, 8, 60, 120, 0, 30, 330, 1260, 1680, 0, 144, 2100, 11760, 30240, 30240, 0, 840, 15344, 113400, 428400, 831600, 665280, 0, 5760, 127008, 1169280, 5821200, 16632000, 25945920, 17297280, 0, 45360, 1176120, 13000680, 80415720, 302702400, 696215520, 908107200, 518918400
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 2]
[2] [0, 3, 12]
[3] [0, 8, 60, 120]
[4] [0, 30, 330, 1260, 1680]
[5] [0, 144, 2100, 11760, 30240, 30240]
[6] [0, 840, 15344, 113400, 428400, 831600, 665280]
Showing 1-10 of 126 results.
Comments