cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A387152 Array read by ascending antidiagonals: A(n, k) = Sum_{j=0..n} binomial(k, j)*|Stirling1(n, j)|.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 2, 3, 3, 1, 0, 6, 7, 6, 4, 1, 0, 24, 23, 16, 10, 5, 1, 0, 120, 98, 57, 30, 15, 6, 1, 0, 720, 514, 257, 115, 50, 21, 7, 1, 0, 5040, 3204, 1407, 546, 205, 77, 28, 8, 1, 0, 40320, 23148, 9076, 3109, 1021, 336, 112, 36, 9, 1
Offset: 0

Views

Author

Peter Luschny, Aug 27 2025

Keywords

Examples

			Array begins:
  [0]  1,     1,      1,      1,       1,       1,       1, ...
  [1]  0,     1,      2,      3,       4,       5,       6, ...
  [2]  0,     1,      3,      6,      10,      15,      21, ...
  [3]  0,     2,      7,     16,      30,      50,      77, ...
  [4]  0,     6,     23,     57,     115,     205,     336, ...
  [5]  0,    24,     98,    257,     546,    1021,    1750, ...
  [6]  0,   120,    514,   1407,    3109,    6030,   10696, ...
  [7]  0,   720,   3204,   9076,   20695,   41330,   75356, ...
  [8]  0,  5040,  23148,  67456,  157865,  323005,  602517, ...
  [9]  0, 40320, 190224, 567836, 1358564, 2837549, 5396650, ...
		

Crossrefs

Rows: A000012 [0], A001477 [1], A000217 [2], A005581 [3], A387204 [4].
Columns: A000007 [0], A000142 [shifted, 1], A387205 [2].
Contains A271700 in transpose.
Cf. A211210 (main diagonal), A130534.

Programs

  • Maple
    A := (n, k) -> add(binomial(k, j)*abs(Stirling1(n, j)), j = 0..n):
    seq(seq(A(n-k, k), k = 0..n), n = 0..10);
    # Expanding rows or columns:
    RowSer := n -> series((1+x)^k*GAMMA(x + n)/GAMMA(x), x, 12):
    Trow := n -> k -> coeff(RowSer(n), x, k):
    ColSer := n -> series(orthopoly:-L(n, log(1 - x)), x, 12):
    Tcol := k -> n -> n! * coeff(ColSer(k), x, n):
    seq(lprint(seq(Trow(n)(k), k = 0..7)), n = 0..9);
    seq(lprint(seq(Tcol(k)(n), n = 0..7)), k = 0..9);
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if n == 0: return 1
        if k == 0: return 0
        return (n - 1) * T(n - 1, k) + T(n, k - 1) - (n - 2) * T(n - 1, k - 1)
    for n in range(7): print([T(n, k) for k in range(7)])

Formula

T(n, k) = n! * [x^n] Laguerre(k, log(1 - x)).
From Natalia L. Skirrow, Aug 27 2025: (Start)
D-finite with T(n,k) = (n-1)*T(n-1,k)+T(n,k-1)-(n-2)*T(n-1,k-1).
O.g.f.: hypergeom([1,y/(1-y)],[],x)/(1-y).
Row o.g.f.: (y/(1-y))_n/(1-y), where (x)_n is the Pochhammer symbol/rising factorial.
Row o.g.f. is also 0^n + y/(1-y)^(n+1)*Prod_{j=1..n-2}(j+1-j*y).
E.g.f.: 1/((1-y)*(1-x)^(y/(1-y))).
Column e.g.f.: hypergeom([-k],[1],log(1-y)).
T(n,k) = [x^k] (1+x)^k*(x)_n.
(End)
Showing 1-1 of 1 results.