cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387204 a(n) = n*(n + 1)*(n^2 + 17*n + 54)/24.

Original entry on oeis.org

0, 6, 23, 57, 115, 205, 336, 518, 762, 1080, 1485, 1991, 2613, 3367, 4270, 5340, 6596, 8058, 9747, 11685, 13895, 16401, 19228, 22402, 25950, 29900, 34281, 39123, 44457, 50315, 56730, 63736, 71368, 79662, 88655, 98385, 108891, 120213, 132392, 145470, 159490, 174496
Offset: 0

Views

Author

Peter Luschny, Aug 27 2025

Keywords

Crossrefs

Cf. A387152 (row 4).

Programs

  • Maple
    a := n -> n*(n + 1)*(n^2 + 17*n + 54)/24: seq(a(n), n = 0..41);
  • Mathematica
    A387204[n_] := n*(n + 1)*(n*(n + 17) + 54)/24;
    Array[A387204, 50, 0] (* Paolo Xausa, Aug 29 2025 *)

Formula

a(n) = [x^n] (-2*x^3 + 7*x^2 - 6*x)/(x - 1)^5.
a(n) = [x^n] Pochhammer(x, 4)*(x + 1)^n.

A387205 a(n) = (n - 1)!*(2 + Harmonic(n - 1)) if n >= 1, and a(0) = 1.

Original entry on oeis.org

1, 2, 3, 7, 23, 98, 514, 3204, 23148, 190224, 1752336, 17886240, 200377440, 2444446080, 32256800640, 457822229760, 6954511737600, 112579862169600, 1934780446771200, 35181735469977600, 674855347635302400, 13618752053114880000, 288426695123589120000, 6396478234890670080000
Offset: 0

Views

Author

Peter Luschny, Aug 27 2025

Keywords

Crossrefs

Cf. A387152 (column 2), A001008, A130534.

Programs

  • Maple
    a := n -> if n = 0 then 1 else (n-1)!*(2 + harmonic(n-1)) fi:
    ser := series(LaguerreL(2, log(1 - x)), x, 24): a := n -> n! * coeff(ser, x, n):
    seq(a(n), n = 0..23);
  • Mathematica
    A387205[n_] := If[n == 0, 1, (n - 1)!*(2 + HarmonicNumber[n - 1])];
    Array[A387205, 25, 0] (* Paolo Xausa, Aug 29 2025 *)
  • PARI
    a(n) = if (n>0, (n-1)!*(2 + sum(i=1, n-1, 1/i)), 1); \\ Michel Marcus, Aug 27 2025

Formula

a(n) = 2*|Stirling1(n, 1)| + |Stirling1(n, 2)| for n >= 1.
a(n) = n! * [x^n] Laguerre(2, log(1 - x)).
a(n) = Gamma(n)*(PolyGamma(n) + EulerGamma + 2) for n >= 1.
Conjecture: Maple returns the exponential series expansion at x = 0:
a(n) = n! * [x^n] (1 + tau + (log(x - 1)^2 - (tau + 4)*log(x - 1) - Pi^2)/2) where tau = 2*Pi*I.
Showing 1-2 of 2 results.