cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A144739 7-factorial numbers A114799(7*n+3): Partial products of A017017(k) = 7*k+3, a(0) = 1.

Original entry on oeis.org

1, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 1990648483200, 131382799891200, 9590944392057600, 767275551364608000, 66752972968720896000, 6274779459059764224000, 633752725365036186624000, 68445294339423908155392000, 7871208849033749437870080000
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2008

Keywords

Examples

			a(0)=1, a(1)=3, a(2)=3*10=30, a(3)=3*10*17=510, a(4)=3*10*17*24=12240, ...
		

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+3) ); # G. C. Greubel, Aug 19 2019
  • Magma
    [ 1 ] cat [ &*[ (7*k+3): k in [0..n] ]: n in [0..20] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Maple
    a:= n-> product(7*j+3, j=0..n-1); seq(a(n), n=0..20); # G. C. Greubel, Aug 19 2019
  • Mathematica
    Table[7^n*Pochhammer[3/7, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
  • PARI
    a(n)=prod(i=1,n,7*i-4) \\ Charles R Greathouse IV, Jul 02 2013
    
  • Sage
    [product(7*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
    

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*3^k*7^(n-k).
G.f.: 1/(1-3*x/(1-7*x/(1-10*x/(1-14*x/(1-17*x/(1-21*x/(1-24*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-4)^n*Sum_{k=0..n} (7/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 7*x)^(3/7).
a(n) ~ sqrt(2*Pi)*7^n*n^n/(exp(n)*n^(1/14)*Gamma(3/7)). (End)
a(n) = A114799(7*n-4). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+4)*a(n-1)=0. - R. J. Mathar, Feb 21 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^4)^(1/7)*(Gamma(3/7) - Gamma(3/7, 1/7)). - Amiram Eldar, Dec 19 2022

A156165 Numbers k such that k![7]+1 is prime (n![7] = A114799(n) = septuple factorial).

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 10, 12, 13, 24, 25, 26, 29, 31, 35, 36, 47, 49, 57, 58, 64, 71, 73, 75, 78, 80, 97, 123, 125, 129, 131, 135, 147, 150, 159, 183, 201, 250, 251, 255, 298, 336, 337, 458, 467, 556, 570, 657, 743, 801, 908, 925, 1003, 1209, 1473, 1524, 1716, 1881, 1926
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

a(103) > 50000. - Robert Price, Sep 03 2012

Crossrefs

Programs

  • Mathematica
    mf[n_, k_] := Product[n - i k, {i, 0, Quotient[n - 2, k]}];
    Reap[For[k = 0, k <= 2000, k++, If[PrimeQ[mf[k, 7] + 1], Sow[k]]]][[2, 1]] (* Jean-François Alcover, Feb 26 2019 *)
    Select[Range[0,2000],PrimeQ[Times@@Range[#,1,-7]+1]&] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    mf(n,k=7)=prod(i=0,(n-2)\k,n-i*k)
    for( n=0,9999, ispseudoprime(mf(n)+1) & print1(n","))

A156167 Numbers n such that n![7]-1 is prime (where n![7] = A114799(n) = septuple factorial).

Original entry on oeis.org

3, 4, 6, 8, 9, 10, 11, 12, 14, 17, 20, 24, 30, 31, 32, 46, 52, 54, 59, 98, 104, 143, 145, 160, 174, 198, 199, 202, 212, 215, 254, 371, 382, 452, 674, 739, 959, 1249, 1657, 2291, 2553, 2650, 3562, 3727, 3853, 4389, 4604, 5449, 5659, 6026, 6878, 7900, 9564, 10150, 12444, 13321, 22642, 24014, 26598, 27430, 31386, 40707, 43328, 45811
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

a(65) > 50000. - Robert Price, Sep 09 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 7] - 1] & ] (* Robert Price, Apr 19 2019 *)
  • PARI
    mf(n,k=7)=prod(i=0,(n-2)\k,n-i*k)
    for( n=1,9999, ispseudoprime(mf(n)-1) & print1(n","))

Extensions

a(43)-a(64) from Robert Price, Sep 09 2012

A288717 Primes of the form k!7+1, where k!7 is the septuple factorial number (A114799).

Original entry on oeis.org

2, 3, 5, 7, 19, 31, 61, 79, 12241, 19801, 29641, 76561, 379441, 2016841, 2756161, 1838865601, 4150656721, 337767408001, 956960801281, 21617114112001, 1534815101952001, 9590944392057601, 30891838760640001, 119715577952256001, 767275551364608001
Offset: 1

Views

Author

Robert Price, Jun 13 2017

Keywords

Crossrefs

Cf. A156165.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 7] + 1, {i, 0, 100}], PrimeQ[#]&]
    Select[Table[Times@@Range[n,1,-7]+1,{n,100}],PrimeQ] (* Harvey P. Dale, Dec 23 2022 *)

A289757 Primes of the form k!7-1, where k!7 is the septuple factorial number (A114799).

Original entry on oeis.org

2, 3, 5, 7, 17, 29, 43, 59, 97, 509, 1559, 12239, 198719, 379439, 633599, 1136678399, 33739804799, 99298742399, 1990648483199, 59126328543388935628799, 3797826416991538753535999, 2409161546475779555007420356689919999, 9325555101161759039183007326207999999
Offset: 1

Views

Author

Robert Price, Jul 11 2017

Keywords

Crossrefs

Cf. A156167.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 7] - 1, {i, 2, 100}], PrimeQ[#]&]

A008542 Sextuple factorial numbers: Product_{k=0..n-1} (6*k+1).

Original entry on oeis.org

1, 1, 7, 91, 1729, 43225, 1339975, 49579075, 2131900225, 104463111025, 5745471106375, 350473737488875, 23481740411754625, 1714167050058087625, 135419196954588922375, 11510631741140058401875, 1047467488443745314570625, 101604346379043295513350625
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n), n>=1, enumerates increasing heptic (7-ary) trees with n vertices. - Wolfdieter Lang, Sep 14 2007; see a D. Callan comment on A007559 (number of increasing quarterny trees).

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> (6*k+1) )); # G. C. Greubel, Aug 17 2019
  • Magma
    [1] cat [(&*[(6*k+1): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    a := n -> mul(6*k+1, k=0..n-1);
    G(x):=(1-6*x)^(-1/6): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..15); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    Table[Product[(6*k+1), {k,0,n-1}], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008, modified by G. C. Greubel, Aug 17 2019 *)
    FoldList[Times, 1, 6Range[0, 20] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
    Table[6^n*Pochhammer[1/6, n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    a(n)=prod(k=1,n-1,6*k+1) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Sage
    [product((6*k+1) for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 17 2019
    

Formula

E.g.f.: (1-6*x)^(-1/6).
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(1/6)^-1*n^(-1/3)*6^n*e^-n*n^n*{1 + 1/72*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Sum_{k=0..n} (-6)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1+x/(1-7x/(1-6x/(1-13x/(1-12x/(1-19x/(1-18x/(1-25x/(1-24x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-5)^n*Sum_{k=0..n} (6/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(6*k+1)/(1 - x*(6*k+6)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
a(n) = A085158(6*n-5). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-6*n+5)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/6^5)^(1/6)*(Gamma(1/6) - Gamma(1/6, 1/6)). - Amiram Eldar, Dec 18 2022

A045754 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).

Original entry on oeis.org

1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000, 9824229050742220308480000, 1110137882733870894858240000
Offset: 0

Views

Author

Keywords

Crossrefs

See also A113134.
Unsigned row sums of triangle A051186 (scaled Stirling1).
First column of triangle A132056 (S2(8)).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019
  • Magma
    [1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    f := n->product( (7*k+1), k=0..(n-1));
    G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)
  • PARI
    a(n)=prod(k=0,n-1,7*k+1)
    
  • Sage
    [7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Sum_{k=0..n} (-7)^(n-k)*A048994(n, k), where A048994 = Stirling-1 numbers.
E.g.f.: (1-7*x)^(-1/7).
G.f.: 1/(1-x/(1-7*x/(1-8*x/(1-14*x/(1-15*x/(1-21*x/(1-22*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-6)^n*Sum_{k=0..n} (7/6)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0), where G(k)= 1 - x*(7*k+1)/(1 - x*(7*k+7)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k+1)/(x*(7*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 7^n * Gamma(n + 1/7) / Gamma(1/7). - Artur Jasinski, Aug 23 2016
a(n) = A114799(7n-6). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+6)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^6)^(1/7)*(Gamma(1/7) - Gamma(1/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 16 2008 at the suggestion of M. F. Hasler, Oct 14 2008
Corrected by Zerinvary Lajos, Apr 03 2009

A288094 Decimal expansion of m(7) = Sum_{n>=0} 1/n!7, the 7th reciprocal multifactorial constant.

Original entry on oeis.org

3, 8, 8, 6, 9, 5, 9, 6, 5, 3, 7, 4, 0, 8, 4, 3, 4, 9, 5, 4, 2, 8, 5, 6, 9, 9, 1, 0, 9, 3, 6, 7, 0, 5, 6, 7, 2, 7, 0, 5, 3, 0, 9, 5, 8, 7, 5, 2, 0, 1, 6, 0, 4, 8, 5, 8, 0, 4, 3, 9, 5, 3, 3, 8, 6, 9, 1, 7, 0, 3, 7, 6, 2, 2, 7, 6, 7, 8, 4, 7, 3, 1, 7, 5, 6, 7, 6, 4, 0, 6, 0, 6, 4, 5, 8, 3, 0, 0, 1, 7, 4, 4, 7, 6
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.88695965374084349542856991093670567270530958752016048580439533869...
		

Crossrefs

Cf. A114799 (n!7), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), this sequence (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); (1/7)*Exp(1/7)*(7 + (&+[7^(k/7)*Gamma(k/7, 1/7): k in [1..6]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[7], 10, 104][[1]]
    RealDigits[Total[Table[1/Times@@Range[n,1,-7],{n,0,500}]],10,120][[1]] (* Harvey P. Dale, May 21 2023 *)
  • PARI
    default(realprecision, 105); (1/7)*exp(1/7)*(7 + sum(k=1,6, 7^(k/7)*(gamma(k/7) - incgam(k/7, 1/7)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/7)*exp(1/7)*(7 + sum(7^(k/7)*(gamma(k/7) - gamma_inc(k/7, 1/7)) for k in (1..6))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288327 Decuple factorial, 10-factorial, n!10, n!!!!!!!!!!.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 24, 39, 56, 75, 96, 119, 144, 171, 200, 231, 528, 897, 1344, 1875, 2496, 3213, 4032, 4959, 6000, 7161, 16896, 29601, 45696, 65625, 89856, 118881, 153216, 193401, 240000, 293601, 709632, 1272843, 2010624, 2953125, 4133376
Offset: 0

Views

Author

Robert Price, Jun 07 2017

Keywords

Examples

			a(13) = 13 * 3 * 1 = 39.
		

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-10);
        fi;
      end;
    List([0..50], n-> a(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    b:=func< n | n le 10 select n else n*Self(n-10) >;
    [1] cat [b(n): n in [1..50]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> `if`(n<1, 1, n*a(n-10)); seq(a(n), n=0..50); # G. C. Greubel, Aug 22 2019
  • Mathematica
    MultiFactorial[n_, k_]:=If[n<1, 1 ,n*MultiFactorial[n-k, k]];
    Table[MultiFactorial[i, 10], {i, 0, 100}]
    Table[Times@@Range[n,1,-10],{n,0,50}] (* Harvey P. Dale, Aug 11 2019 *)
  • PARI
    a(n)=if(n<1, 1, n*a(n-10));
    vector(40, n, n--; a(n) ) \\ G. C. Greubel, Aug 22 2019
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-10)
    [a(n) for n in (0..50)] # G. C. Greubel, Aug 22 2019
    

Formula

a(n)=1 for n < 1, otherwise a(n) = n*a(n-10).
Sum_{n>=0} 1/a(n) = A342033. - Amiram Eldar, May 23 2022

A129116 Multifactorial array: A(k,n) = k-tuple factorial of n, for positive n, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 3, 24, 1, 2, 3, 8, 120, 1, 2, 3, 4, 15, 720, 1, 2, 3, 4, 10, 48, 5040, 1, 2, 3, 4, 5, 18, 105, 40320, 1, 2, 3, 4, 5, 12, 28, 384, 362880, 1, 2, 3, 4, 5, 6, 21, 80, 945, 3628800, 1, 2, 3, 4, 5, 6, 14, 32, 162, 3840, 39916800, 1, 2, 3, 4, 5, 6, 7, 24, 45, 280, 10395, 479001600
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2007

Keywords

Comments

The term "Quintuple factorial numbers" is also used for the sequences A008546, A008548, A052562, A047055, A047056 which have a different definition. The definition given here is the one commonly used. This problem exists for the other rows as well. "n!2" = n!!, "n!3" = n!!!, "n!4" = n!!!!, etcetera. Main diagonal is A[n,n] = n!n = n.
Similar to A114423 (with rows and columns exchanged). - Georg Fischer, Nov 02 2021

Examples

			Table begins:
  k / A(k,n)
  1 | 1 2 6 24 120 720 5040 40320 362880 3628800 ... = A000142.
  2 | 1 2 3  8  15  48  105   384    945    3840 ... = A006882.
  3 | 1 2 3  4  10  18   28    80    162     280 ... = A007661.
  4 | 1 2 3  4   5  12   21    32     45     120 ... = A007662.
  5 | 1 2 3  4   5   6   14    24     36      50 ... = A085157.
  6 | 1 2 3  4   5   6    7    16     27      40 ... = A085158.
		

Crossrefs

Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662(n!4), A085157 (n!5), A085158 (n!6), A114799 (n!7), A114800 (n!8), A114806 (n!9), A288327 (n!10).
Cf. A114423 (transposed).

Programs

  • Maple
    A:= proc(k,n) option remember; if n >= 1 then n* A(k, n-k) elif n >= 1-k then 1 else 0 fi end: seq(seq(A(1+d-n, n), n=1..d), d=1..16); # Alois P. Heinz, Feb 02 2009
  • Mathematica
    A[k_, n_] := A[k, n] = If[n >= 1, n*A[k, n-k], If[n >= 1-k, 1, 0]]; Table[ A[1+d-n, n], {d, 1, 16}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)

Formula

A(k,n) = n!k.
A(k,n) = M(n,k) in A114423. - Georg Fischer, Nov 02 2021

Extensions

Corrected and extended by Alois P. Heinz, Feb 02 2009
Showing 1-10 of 13 results. Next